提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

人教版高中语文必修2《就任北京大学校长之演说》说课稿3篇

  • 北师大初中数学九年级上册黄金分割1教案

    北师大初中数学九年级上册黄金分割1教案

    解析:想要看起来更美,则鞋底到肚脐的长度与身高之比应为黄金比,此题应根据已知条件求出肚脐到脚底的距离,再求高跟鞋的高度.解:设肚脐到脚底的距离为x m,根据题意,得x1.60=0.60,解得x=0.96.设穿上y m高的高跟鞋看起来会更美,则y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她应该穿约为7.5cm高的高跟鞋看起来会更美.易错提醒:要准确理解黄金分割的概念,较长线段的长是全段长的0.618.注意此题中全段长是身高与高跟鞋鞋高之和.三、板书设计黄金分割定义:一般地,点C把线段AB分成两条线段AC 和BC,如果ACAB=BCAC,那么称线段AB被点 C黄金分割黄金分割点:一条线段有两个黄金分割点黄金比:较长线段:原线段=5-12:1 经历黄金分割的引入以及黄金分割点的探究过程,通过问题情境的创设和解决过程,体会黄金分割的文化价值,在应用中进一步理解相关内容,在实际操作、思考、交流等过程中增强学生的实践意识和自信心.感受数学与生活的紧密联系,体会数学的思维方式,增进数学学习的兴趣.

  • 北师大初中八年级数学下册因式分解教案

    北师大初中八年级数学下册因式分解教案

    解:设另一个因式为2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一个因式为2x2+x-3.方法总结:因为整式的乘法和分解因式互为逆运算,所以分解因式后的两个因式的乘积一定等于原来的多项式.三、板书设计1.因式分解的概念把一个多项式转化成几个整式的积的形式,这种变形叫做因式分解.2.因式分解与整式乘法的关系因式分解是整式乘法的逆运算.本课是通过对比整式乘法的学习,引导学生探究因式分解和整式乘法的联系,通过对比学习加深对新知识的理解.教学时采用新课探究的形式,鼓励学生参与到课堂教学中,以兴趣带动学习,提高课堂学习效率.

  • 北师大初中数学九年级上册比例的性质1教案

    北师大初中数学九年级上册比例的性质1教案

    若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0),   那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.

  • 北师大初中八年级数学下册平移的认识教案

    北师大初中八年级数学下册平移的认识教案

    方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.

  • 北师大初中九年级数学下册第一章复习教案

    北师大初中九年级数学下册第一章复习教案

    一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。

  • 北师大初中数学九年级上册矩形的性质1教案

    北师大初中数学九年级上册矩形的性质1教案

    解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形    叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.

  • 北师大初中数学九年级上册矩形的判定1教案

    北师大初中数学九年级上册矩形的判定1教案

    在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.

  • 北师大初中数学九年级上册菱形的判定1教案

    北师大初中数学九年级上册菱形的判定1教案

    (1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

  • 北师大初中数学九年级上册相似多边形1教案

    北师大初中数学九年级上册相似多边形1教案

    (2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.

  • 北师大初中九年级数学下册圆教案

    北师大初中九年级数学下册圆教案

    解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.

  • 北师大初中九年级数学下册圆的对称性教案

    北师大初中九年级数学下册圆的对称性教案

    我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.

  • 北师大初中九年级数学下册正弦与余弦1教案

    北师大初中九年级数学下册正弦与余弦1教案

    解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.

  • 北师大初中八年级数学下册分式的乘除法教案

    北师大初中八年级数学下册分式的乘除法教案

    通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d,已知球的体积公式为V=43πR3(其中R为球的半径),求:(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积比是多少?(3)买大西瓜合算还是买小西瓜合算?解析:(1)根据体积公式求出即可;(2)根据(1)中的结果得出即可;(3)求出两体积的比即可.解:(1)西瓜瓤的体积是43π(R-d)3,整个西瓜的体积是43πR3;(2)西瓜瓤与整个西瓜的体积比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤与整个西瓜的体积比是(R-d)3R3<1,故买大西瓜比买小西瓜合算.方法总结:本题能够根据球的体积,得到两个物体的体积比即为它们的半径的立方比是解此题的关键.

  • 北师大初中七年级数学上册第五章复习教案

    北师大初中七年级数学上册第五章复习教案

    16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).A.从甲组调12人去乙组 B.从乙组调4人去甲组C.从乙组调12人去甲组 D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )A.3个 B.4个 C.5个 D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:2(x-3)+3(2x-1)=5(x+3)20.解方程: 21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.

  • 北师大初中七年级数学上册合并同类项教案1

    北师大初中七年级数学上册合并同类项教案1

    一天,王村的小明奶奶提着一篮子土豆去换苹果,双方商定的结果是:1千克土豆换0.5千克苹果.当称完带篮子的土豆重量后,摊主对小明奶奶说:“别称篮子的重量了,称苹果时也带篮子称,这样既省事又互不吃亏.”你认为摊主的话有道理吗?请你用所学的有关数学知识加以判定.解析:要看摊主说得有没有道理,只要按称篮子和不称篮子两种方式分别求出所得苹果的重量,比较即可.解:设土豆重a千克,篮子重b千克,则应换苹果0.5a千克.若不称篮子,则实换苹果为0.5a+0.5b-b=(0.5a-0.5b)千克,很明显小明奶奶少得苹果0.5b千克.所以摊主说得没有道理,这样做小明奶奶吃亏了.方法总结:体现了数学在生活中的运用.解决问题的关键是读懂题意,找到所求的量之间的关系.三、板书设计数学教学要紧密联系学生的生活实际,本节课从实际问题入手,引出合并同类项的概念.通过独立思考、讨论交流等方式归纳出合并同类项的法则,通过例题教学、练习等方式巩固相关知识.教学中应激发学生主动参与学习的积极性,培养学生思维的灵活性.

  • 北师大初中七年级数学上册角的比较教案1

    北师大初中七年级数学上册角的比较教案1

    1.会用度量法和叠合法比较两个角的大小.2.理解角的平分线的定义,并能借助角的平分线的定义解决问题.3.理解两个角的和、差、倍、分的意义,会进行角的运算.一、情境导入同学们,如图是我们生活中常用的剪刀模型,现在考考大家,剪刀张开的两个角哪个大呢?二、合作探究探究点一:角的比较在某工厂生产流水线上生产如图所示的工件,其中∠α称为工件的中心角,生产要求∠α的标准角度为30°±1°,一名质检员在检验时,手拿一量角器逐一测量∠α的度数.请你运用所学的知识分析一下,该名质检员采用的是哪种比较方法?你还能给该质检员设计更好的质检方法吗?请说说你的方法.解析:角的比较方法有测量法和叠合法,其中测量法更具体,叠合更直观.在质检中,采用叠合法比较快捷.

  • 北师大初中七年级数学上册绝对值教案1

    北师大初中七年级数学上册绝对值教案1

    方法总结:由绝对值的定义可知,一个数的绝对值越小,离原点越近.将实际问题转化为数学问题,即为与标准质量的差的绝对值越小,越接近标准质量.【类型四】 绝对值的非负性已知|x-3|+|y-2|=0,求x+y的值.解析:一个数的绝对值总是大于或等于0,即为非负数,若两个非负数的和为0,则这两个数同为0.解:由题意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法总结:几个非负数的和为0,则这几个数都为0.三、板书设计绝对值相反数绝对值性质→|a|=a(a>0)0(a=0)-a(a<0)互为相反数的两个数的绝对值相等两个负数比较大小:绝对值大的反而小绝对值这个名词既陌生,又是一个不易理解的数学术语,是本章的重点内容,同时也是一个难点内容.教材从几何的角度给出绝对值的概念,也就是从数轴上表示数的点的位置出发,得出定义的.

  • 北师大初中七年级数学上册去括号教案1

    北师大初中七年级数学上册去括号教案1

    方法总结:本题考查了利用数轴,比较数的大小关系,对于含有绝对值的式子的化简,要根据绝对值内的式子的正负,去掉绝对值符号.探究点四:含括号的整式的化简应用某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压,调整为按售价的80%出售,又销售了60件.(1)销售100件这种商品的总售价为多少元?(2)销售100件这种商品共盈利多少元?解析:(1)求出前40件的售价与后60件的售价即可确定出总售价;(2)由“利润=售价-成本”列出关系式即可得到结果.解:(1)根据题意得:40(a+b)+60(a+b)×80%=88a+88b(元),则销售100件这种商品的总售价为(88a+88b)元;(2)根据题意得:88a+88b-100a=-12a+88b(元),则销售100件这种商品共盈利(-12a+88b)元.方法总结:解决此类题目的关键是熟记去括号法则和熟练运用合并同类项的法则.

  • 北师大初中七年级数学上册数轴教案1

    北师大初中七年级数学上册数轴教案1

    将有理数-2,+1,0,-212,314在数轴上表示出来,并用“<”号连接各数.解析:利用数轴上的点来表示相应的数,再利用它们对应点的位置来判断各数的大小.解:如图:由数轴可知-212<-2<0<+1<314.方法总结:一般地,数轴上多个数的大小比较,可利用“数轴上两个点表示的数,右边的总比左边的大”这一性质进行比较.探究点四:点在数轴上的移动问题点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到点B时,点B所表示的有理数为()A.2 B.-6C.2或-6 D.以上答案都不对解析:∵点A为数轴上表示-2的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为2.故选C.方法总结:点A在数轴上移动要注意分两种情况:一个向左,一个向右,不要漏掉其中的一种情况.

  • 北师大初中七年级数学下册感受可能性教案

    北师大初中七年级数学下册感受可能性教案

    一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件.故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件).若是不确定的,则该事件是不确定事件.

上一页123...254255256257258259260261262263264265下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。