一、说教材1、教材简析《虽有嘉肴》是人教版八年级下册第六单元中的一篇文言文,本单元文言文的教学重点是:能借助注释和工具书读懂课文大意,然后在反复诵读中领会它们丰富的内涵和精美的语言,并积累一些常用的文言词语。2、教学目标(1)熟读课文,并能准确地翻译、背诵全文,积累常用文言词语的用法。(2)理解文中所蕴含的道理,提高学生的语言表达能力和综合分析能力。(3)联系实际,用正确的学习方法指导自己的学习。3、教学重点难点教学重点:积累重点文言字词,熟读并背诵课文。教学难点:准确翻译文句,理解文中所蕴含的道理。
(三)阅读课文,整体感知。安排学生自由朗读课文,想想作者对大雁作了那些描写,勾出相关句子,想一想作者从大雁身上找到了那些“失去的东西”?这是在让学生充分发挥自己的个体作用,然后又安排四人小组讨论全班交流,意在合作探求,以便进一步领会所学的知识,最后教师利用多媒体展示参考内容,使学生进一步完整地掌握所学的知识。通过自己学、小组学、教师展示点拨,学困生也很容易地掌握所学知识,优生就更牢固地掌握了所学的知识。这样学生们对大雁的特点就有了较多了解,明白作者从大雁身上找回了什么,从中受到感悟。(三)精读课文,品味语言特点教师指导学生朗读一些优美的句子,指导学生从内容、修辞手法、说明方法、等方面去品味语言,利用多媒体来展示例句,加深学生印象,然后安排学生自己先找出课文中自己认为写的好的句子进行品味,然后四人小组讨论交流,最后全班交流,让学生资源共享。活动中我鼓励学生充分发表自己的观点,适时加以点拨,以此突破教学重难点。
同学们,今天我们一起来认识一位文化名人。他因长期的贬谪生活,使他的内心十分郁闷,因此,他寄情山水,写下了著名的山水游记《永州八记》。他就是——柳宗元。余秋雨先生曾这样评价柳宗元,他说:“灾难也给了他一份宁静,使他有了足够的时间与自然相晤,与自我对话!”今天,就让我们一同走进柳宗元,走进他的《小石潭记》。(因为这段导语不仅提示了写作背景、文章内容,暗示了作者情感,能为学生学课文作背景、情感铺垫,而且语言很有吸引力,余秋雨的深情评述,易感染学生。导入语亲切,像导游一样引领学生饶有兴趣地进入文本。)(二)朗读、感知、品悟古人云:“三分诗文七分读”。文言文教学应重视积累、感悟和熏陶。要达到这一目的,最有效的手段是诵读。所以这节课我设计了四个朗读环节。(设计意图:在多重对话中理解文本:学生通过四个层次的朗读、品味语言和文本进行对话;通过体味柳宗元情怀与作者进行对话;通过有创见性地探究与生活进行对话;通过合作、交流、分享实现师生、生生之间的对话,在多重对话中达成教学目标。)
一、说教材:《北冥有鱼》是庄子的作品,文本通过丰富的想象和生动的比喻,为我们揭示了庄子思想的精髓:逍遥游。这篇课文是初中语文八年级下册第六单元的第一篇文章,属于讲读课文。二、说目标:根据《全日制普通中学语文教学大纲》规定:高中生“要诵读古典诗词和浅易文言文,理解一定数量的名篇”。据此,我设置了一课时内容,确立了如下教学目标:(一)知识和能力目标:1、积累文言知识,掌握重点的实虚词、句式、词类活用等文言现象。2、理解《北冥有鱼》语言特点和写作方法。(二)能力目标:诵读课文,在了解文章大意的基础上体味作者的思想感情。(三)德育目标:了解庄子及《北冥有鱼》的基本哲学思想,并且辩证的看待这种思想。
主旨归纳本文以散文的自由笔法,抒写了作者关于灯笼的一些记忆,往昔经历、乡情民俗、诗词典故,从不同方面表达了灯笼对于作者乃至民族的重要意义。激发了作者的爱国情怀,同时表达了对时局的担忧和对未来的期望。重难导悟1.结合全文,简析作者喜爱灯笼的原因是什么?①灯笼寄托着祖父、母亲等亲人的慈爱和牵挂,也寄托着作者对亲人的感激之情;②许多乡情民俗与灯笼结下太多的缘分,给作者留下很多美好的回忆;③灯笼能为夜行人指路,温暖他人;④记录、传承着家族历史;⑤引发作者联想起古代将领挑灯看剑,抗击敌人的情景,激发爱国热情。2.文章结尾一段所表现的作者的观点态度是什么?请结合文章,进行分析并评价。作者热烈赞颂古代将军塞外点兵,挑灯看剑,英勇杀敌的气概;他们激发了作者的爱国情怀,作者热切希望冲上前线,奋勇杀敌,打击日寇;同时表达了对时局的担忧和对未来的期望,希望有更强大的力量,有更具凝聚力的精神,团结抗战,打败敌人,保卫好自己的家园。作者的爱国情怀值得肯定,这种情感在我们今天也是不可缺少的。
马克·吐温(1835-1910),美国幽默大师、小说家,19世纪后期美国现实主义文学的杰出代表之一。作品风格以幽默和讽刺为主,既富于独特的个人机智与妙语,又不乏深刻的社会洞察与剖析。主要的代表作品有《百万英镑》(短篇)等。此外,马克·吐温还有自己的四大名著:《哈克贝利·费恩历险记》《汤姆·索亚历险记》《败坏了哈德莱堡的人》《苦行记》等。勃朗峰是阿尔卑斯山脉最高峰,也是西欧第一高峰,海拔4807米,法语意为“银白色山峰”,位于法国和意大利边境。勃朗峰地势高耸,常年受西风影响,降水丰富。冬季积雪,夏不融化,白雪皑皑,山体约有200平方公里为冰川覆盖。勃朗峰设有空中缆车和冬季体育设施,为登山运动胜地;山峰雄伟,风光旖旎,为阿尔卑斯山最大旅游中心。勃朗峰下筑有公路隧道,起自法国的沙漠尼山谷到意大利的库马约尔,长11.6公里,1965年建成通车,使巴黎到罗马的里程缩短了约220公里。
从作文批改的情况来看,较多学生作文的字数不足,文章的段落少,语句不够通顺,中心不明确,有的同学作文只是从阅读短文中抄些内容,甚至个别同学一个字也不写,写作态度极差。针对上述情况,我认为,作为教者要强化基础知识、阅读和作文教学,使本年级的学生的语文成绩有所提高。改变态度,关爱学生。放下架子,蹲下身子,走进学生的心灵,学生才会亲其师,信其道。情感的交流是我们工作的突破口,用情感到学生,激发学生的学习热情和潜能。我们的策略是:扶特---促中---培优,通过个别辅导和分散培优的形式对学生进行扶特培优,具体做好四个字:细,从细节、小事入手。盯,盯紧特殊学生,矫正他们的不良行为。帮,建立帮扶制度,建立课后辅导机制。活,开展竞赛,开展活动。因材施教,分层要求。在教学过程中,不仅要关注优秀生和特殊生,也要关注中等生和下等生,努力提高整体成绩。
一.说教材1.教材的地位及作用《壶口瀑布》是人民教育出版社《语文》(基础模块)下册第5单元的第一篇课文,也是大纲要求基础模块下册“阅读与欣赏”的第一篇课文。本单元主题是“人与自然”,教学目的是使学生正确理解人类和大自然的关系,直面如何善待自然,善待每一个生命等问题,从而获得新的感悟。课文通过对壶口瀑布,对黄河的赞美,联想到人勇往直前的精神;对大自然的赞美和对人性精神的赞美,正是落实本单元学习目的的载体。2.教学目标根据大纲要求,我从教材和学生实际出发,确定了知识、能力、情感三个教学目标。知识目标是:感受壶口瀑布雄伟壮阔的气势,了解壶口瀑布的特点。能力目标是:领会课文运用多种手法描写壶口瀑布的妙处,学习多种描写手法的运用。情感目标是:领悟作者借自然景观所表达的对于人生的思考和对于民族精神的歌颂。
一、说教材1、教材简析:《桃花源记》是人教版初中语文八年级下册第3单元第一课,第三单元是文言文单元,《桃花源记》《小石潭记》《核舟记》等几篇文章从不同的角度表现了古人的“理想”。《桃花源记》作为本单元的开篇之作,在艺术创作上也堪称经典。文章虽篇幅短小,但其文笔简洁至极而文采飞扬。陶渊明在归隐田园的第16年写作此文。陶渊明生活在晋宋易代之际,连年混战,赋役繁重,这些状况激起陶渊明思想的波澜,产生了对当权者的不满,加深了对当时社会的憎恨。但他无力改变,也不愿与统治者同流合污,只好借助创作来抒发情怀。 2、教学目标:《语文课程标准》(实验稿)对7~9年级学生的阅读能力提出这样的要求“阅读浅显的文言文,能借助注释和工具书理解基本内容,并积累一些常用的文言词。初步领悟作品内涵,从中获得对自然、社会、人生的有益启示。对作品的思想感情倾向,能联系文化背景作出自己的评价。”初一年级的学生基本能够借助课下注释和工具书能读懂课文的意思。根据三维教学理念,结合文体特征,我将本课教学目标设定为:
一、说教材:《一滴水经过丽江》这篇课文是作者应当地政府之约,为中学生写的一篇有关丽江的散文,义务教育教科书八年级下五单元新选的一篇游记散文,这是一篇别具一格游记,与一般游记作品以人的游踪为线索不同,作者化身为一滴水,以水的游踪为线索,展开对古城丽江自然风光,人文风情进行描绘,构思新颖,视觉独特。表现作者对丽江的喜爱和赞美二、教学目标:培养知识和技能:1.学习以物为叙述角度,按地点转换安排结构的写作手法2.体会作者以一滴水的视角去游览丽江的新颖构思。情感、态度与价值观培养热爱祖国风光,热爱祖国灿烂文化,为把祖国建设得更美好而努力学习。重点: 学习以物为叙述角度,按地点转换安排结构的写作手法难点: 会作者化身为一滴水经过丽江,介绍丽江的新颖构思和独特视角把握景物描写的特点
大纲第二条第三款:口语交际要讲究文明和修养,态度自然,尊重对方,注意场合和对象。这是初语教学的重要内容。第三条三款、四款:教学中应注意的问题指出:要重视学生思维能力的发展,教学过程要突出学生的实践活动,提倡灵活多样的教学方式。因此将此文教学定为听说能力训练课。 本文是初语八年级下册第四单元第一课。八年级下册教学重点之一就是“着重培养学生实际运用语言的能力”,因此,本册一至三单元分别安排了语言运用的简明、连贯、得体的训练。本单元的语言实际运用要求得体即说话要注意场合与对象。单元训练目标为演讲与辩论。本文为演讲的范文,学习此文后,要求学生能演讲,会演讲。所以确定了目标2、3、4。
1、落实教学常规,提高教学效率本学期采用导学案备课,要求教师要认真把握教材,研读教参,抓住重难点,结合我校学生的实际情况设计出适合本学科的导学案,课后还要写出教学反思,坚持认真备课,及时反思的备课制度。对于作业的设计与批改,要认真对待,每月要接受学校的检查,不仅次数要达标,对于作业的设计、批改情况、学生的书写等方面也要力求达到要求。
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.