在这一环节里我设计了让学生们利用高位置的声音轻声朗诵歌词,来理解歌词内容及其主题思想,便于他们在演唱时把握感情表达的分寸。 第六环节是拓展部分,主要是让学生们在《晚风》的旋律中了解一些有关俄罗斯的人土风情,拓展学生的视野。其实对唱好合唱来说,有一个好的“音乐的耳朵”是非常重要的。合唱讲究的是一个整体的合作,只有相互地倾听,求得准确和谐,才能保证合唱的成功。同时合唱时的音准务求准确,这样才能在大家的努力下,共同创造出优美动听的和声,所以每个人对自己所发出的声音,要做到“心”里有数,而这种感觉的建立,有很大一部分依赖于“音乐的耳朵”,要唱得好,首先要听得好。在平时的课堂教学中,要让学生多听,听录音、听教师范唱、听琴弹奏、听学生唱,在多听中培养自己音乐的耳朵。
5、好多同学听到了一些声音,大家再认真听一遍,看还能听出什么声音来。[这个环节是本课重点,刚开始老师引导听,为了不让学生感到枯燥,我特别找了渔舟唱晚的影像资料,结合乐曲欣赏,也能让学生更直观的认知乐曲。最后的复听让学生在主题变换处给老师作出提示手势,增加了互动,也能让学生更好地掌握这首乐曲的结构。](五)拓展延伸 (约6分钟)1、简单介绍民族乐曲在国际上的影响,使学生对民族音乐有自豪感觉,培养学生热爱民族音乐,热爱祖国文化。同学们给的主题提示非常到位,说明我们已经抓住了乐曲的灵魂。《渔舟唱晚》是我国民族音乐殿堂中一颗璀璨的明珠,中国对外文化协会将此曲作为我国民族音乐的代表之一送给国际友人。我国的民族广播乐团在国外演出时,《渔舟唱晚》经常作为重要乐曲演出,并获得国际友人很高的评价。
播放音乐《雨花石》并请学生生观看一些有关石头的图片教师有感情的范唱。教唱歌谱。在教唱歌谱中注意难点的解决,分别出示以小石头造型的节奏卡片,复习四分音符、八分音符及四分休止符。还有新学的音符,十六分休止符。学生根据直观判断时植的长短,并口读,练习。有感情的读歌词听琴声轻声哼唱歌曲。其中请学生体会与比较:运用休止符的地方你有什么样的感受?如果不用会怎样。唱一唱,比一比,说一说。请学生有感情的演唱,教师及时给予鼓励。教师总结石头可贵的精神。石头虽小,却有很多的作用等我们去发现。法国著名艺术家罗丹曾说过:“对于我们的眼睛,不是缺少美,而是缺少发现。”我想,通过这样的教学设计,让学生在音乐中认识美,在生活中寻找美,在未来里创造美,让美融入每一个孩子以上设计肯定还有一些不足之处,敬请各位老师提出宝贵意见。
教学时间:教学准备:小黑板,挂图。教学过程:一、复习旧知,引入新课。1、请大家想一想到今天为止,我们已经复习了本学期学过的哪些知识?(表内除法。万以内数的认识和加法、减法。克和千克及图形的变换。)2、对这些知识还有没有什么问题?还有没有内容是我们没有复习到或复习了掌握不好的?如果学生有问题,则针对问题,让同学们一起来想办法解决这些问题。学生提出问题,思考解决方法。二、复习整理:1、分别出示教材第122页第13、14题的挂图。(如果没有,就让学生直接看书)(1)看了图后,你明白图中的画是什么意思吗?学生看挂图,小组讨论这两题的意思。叙述两幅图的意思,没有说好的请其他同学来补充完整。在小组内讨论交流。(2)怎样来解决这两个生活中的实际问题?
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
低年级学生注意力不易持久。单调的练习学生容易产生厌倦情绪,降低练习效率。况且对于笔算两位数加减两位数,学生们掌握得都很熟练了。针对这些,我把整堂课的设计注重以下几点:1、设计生活化的教学内容。《标准》指出:“人人学有价值的数学。”“有价值”的数学应该与学生的现实生活和以往的知识体验有密切的关系,是对他们有吸引力、能使他们产生兴趣的内容。这节课我的教学内容是笔算。开始时我并没有直接出示两位数加减两位数的笔算练习,从旧知到新知。而是试图从日常生活入手,创设一个帮助老师选择买东西的情境,希望通过帮助老师从2种价格不同的电风扇和从2种价格不同的洗衣机中各选择一样,计算价格,力图从真实的生活环境中解决问题,放开手让他们去学。况且用学生熟悉的,有兴趣的,贴近他们现实生活的内容进行教学,才能唤起他们的学习兴趣,调动学习积极性,使学生感受到生活与数学知识是密不可分的,使数学课富有浓郁的生活气息,从而产生学习和探求数学的动机,主动应用数学去思考问题、解决问题。
【说教学目标】根据教学大纲和新课程标准要求,这节课的教学目标确定为:1、知识与技能:由生活实际出发,让学生感受万以内的数在生活中的应用,进一步体会相邻两个计数单位之间的十进关系。学会读写万以内的数,知道数的组成,掌握数位顺序表。2、过程与方法:在具体情景中感受大数的意义,培养学生的数感和估计意识;经历观察、操作及与同伴合作交流等数学活动过程,使学生初步学会有条理地思考和解决问题。3、情感与态度:进一步体验数学与人类生活的密切联系;在活动中体验学习的成功与快乐,培养学习数学的兴趣和自信心并能正确评价自己和他人。其中认识数的计数单位“万”,会读写万以内的数,掌握数位顺序表时这节课的重点,而熟练地读写万以内的数是难点。
2.生活情境导入:昨天,老师去逛了逛家电商场,并记下了几种家电的价格,其中,电视机4000元,冰箱2000元,热水器800元,电饭煲300元,电水壶70元,电风扇90元,出示PPT课件。根据这些信息,你能提出哪些关于加减法的数学问题呢?将自己提出的问题写在练习本上,并列式计算。(二)新课探究,整理归纳1.指导学生提出问题,并板书,(1)电视机比冰箱贵多少元?(2)电视机和热水器总共要多少元?(3)冰箱比热水器贵多少元?2.让学生回顾以前学过的旧知识,列式并解答问题。并说说自己的算法,课堂上交流算法,教师板书,让学生充分体会算法多样化。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。
二、说教法在本课的教学中我力求改变过去重知识、轻能力,重结果、轻过程,重教法、轻学法的状况。树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想。本课的教学方法有创设情境法、引导探究法、类比迁移法、归纳总结法、组织练习法等。三、说学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而我们要特别重视学生学习方法的培养和指导。本课学生的学习方法主要有:自主发现法、合作探究法、类比迁移法、归纳总结法、感知体验法等。四、说教学程序课标指出教学应遵循学生学习数学的心理规律,强调从学生已有生活经验出发,将数学活动置身于实施的生活背景之中,为他们提供观察操作、实现的机会。根据本节课的教学内容我设置了如下四大环节:(一)复习旧知、引入新课。
我说课的内容是小学数学二年级下册《1000以内数的认识》,本节课的教学时建立在学生学习过百以内数的认识基础之上的,是学生对100以内数的认识的延伸和扩展,同时,它有着一个非常重要的地位,就是要为学习10000以内数的认识做好铺垫,因为,1000或10000都是比较大的数,在学生的认识还很有限的基础上,如何让学生能尽快的建立起大数的概念和意识,在这里格外重要,对于这一部分内容,《小学数学课程标准》中是这样阐述的:能认、读、写万以内的数,会用数表示物体的个数或事物的顺序和位置,能说出各数位的名称,识别各数位的数字的意义;结合现实素材感受大数的意义,并能进行结算。根据这一阐述,我把本课时的教学目标定义以下几点:1、学习1000以内的数,体验数的产生和作用。2、会数1000以内的数,认识计数单位“千”,体会十进关系。3、让学生经历观察、猜想、操作等数学活动过程,结合现实材料感受大数的意义,逐渐发展学生的数感。
一、 说教学内容教材第75页例6及练习十六第1、2、4题。二、 说教材本教材是学生已经掌握1000以内数的读法、写法以及10000以内数的认识基础上进行教学的。三、 说教学目标知识能力目标:通过本节课的学习,使学生在已有知识的基础上,学会读写万以内的数(中间、末尾有0),且能总结出读写万以内数的方法。情感目标:让学生学习用具体的数描述生活中的事物并与他人交流,培养学习数学的兴趣和自信心,逐步发展学生的数感。四、 说重点、难点重点:学会读写万以内的数。(末尾、中间有0)难点:学会读写万以内的数。(末尾、中间有0)五、 说教法用引导、自学的教学方法来达到课堂教学的最佳效果。六、 说学法我准备在小组合作、小组交流探索方面做重点指导,引导学生怎样自学,怎样提高有价值的问题。
二、教学目标1、知识与技能:通过观察、操作等实践活动,进一步加深对平移和旋转新知的认识。培养学生动手实践能力,并初步获得绘图、剪图等技能。2、数学思考:在对简单图形变化、运动规律的探索过程中,发展空间观念,培养形象思维能力和逻辑思维能力,初步渗透变换的数学思想方法。在解决问题过程中,能进行简单的、有条理的思考。3、解决问题:能在教师指导下,从日常生活中发现简单的数学问题。有与同伴合作解决问题的体验。初步学会表达解决问题的大致过程和结果。4、情感与态度:在同伴和教师的鼓励与帮助下,对身边的数学有好奇心,能够积极参与数学实践活动。能克服在数学活动中的某些困难,获得成功的体验,有学好数学的信心。了解并喜爱中国民间的传统工艺“剪纸”。