本单元主要围绕着有关濒临灭绝的动物这一话题,学习了应该怎样保护我们的环境,以及就某一问题展开辩论。目标提示语言目标能够运用所学知识,就某一问题展开辩论。认知目标1、复习一些语法:现在进行时、一般现在时、用used to 表示一般过去时、现在完成时、一般过去时的被动语态。2、学会表达同意和不同意。3、学会以下基本句型:We’re trying to save the manatees.Manatees eat about 100 pounds of food a day.There used to be a lot of manatees.In 1972,it was discovered that they were endangered.Some of the swamps have become polluted.情感目标了解一些濒临灭绝的动物的生活习性和濒临灭绝的原因,教育学生应该如何保护环境。教学提示充分利用多媒体等教学设备,创设与本课话题相关的情境,如各种不同种类的动物、动物园以及有关环境的画画等等。围绕着本单元的教学目标,设计一些贴近学生实际的教学任务,如让学生谈论自己最喜欢的动物,如何拯救濒危动物,如何保护环境等等。让学生根据所学知识,就动物园是否对动物有利以及其他的话题进行辩论。
教学目标:1. 掌握本单元一些重点词汇的写法和用法。2. 学会自如谈论餐桌礼仪。Step 1 RevisionAsk some students to retell the customs at the table in France in the passage in 3a.Step 2 Self checkPart 1. Fill in each bland with the correct word given. Students do the exercises by themselves at first. Then check the answers. Ask the students to comprehend the sentences and help them point out uses of some words, like “arrive (at / in) sw., spend time / money on sth , spend time / money (in) doing sth.”Part 2. Read about Fan Ling’s experience in a western restaurant. Understand the passage. Point out some key points in the passage.1. be / get used to doing sth. 习惯做某事2. begin with = start with 以….开头3. crowd v. 挤满,塞满 the crowd 人群 crowded adj. 拥挤的Then students discuss about how she would solve her problem. Ask some to share their stories with others.Part 3. Complete the crossword by looking at the sentences on the left. Then check the answers.
6.家书,蕴含着家风、家训、家教,也承载着社会记忆和文化传承,为此,阜阳市第 十七中学开展了“一封家书致父母”主题活动。开展这一活动 ( )A. 旨在引导学生传承传统美德 B.表明文明因交流而丰富多彩C.是全面继承传统文化的体现 D.显示了中华文化是最优秀的7.2021年7月25日,我国世界遗产提名项目“泉州:宋元中国的世界海洋商贸中心”顺 利通过联合国教科文组织第44届世界遗产委员会会议审议,成功列入《世界遗产名 录》。至此,我国世界遗产总数升至56项。“泉州:宋元中国的世界海洋商贸中心” 成功申遗( )A.体现了中华优秀传统文化是世界上最优秀的文化B.说明了传统文化是一个国家兴旺发达的不竭源泉C.是保护和传承中华优秀传统文化的最佳途径D.能够进一步增强中国人民的自豪感,坚定文化自信8.三星堆遗址新发现6座“祭祀坑”,现己出土重要文物500余件。
参考答案:(1) 人与自然和谐共生。(2) ①国家:加强立法,完善资源环境方面的法律法规,严格执法;坚持保护环境、节 约资源的基本国策,坚持可持续发展战略;处理好经济发展与环境保护的关系,走绿色、 循环、低碳发展之路;建设资源节约型、环境友好型社会。②企业:增强社会责任意识, 依法履行保护环境的义务,落实节能减排政策;加大环保资金的投入力度;依靠科技创 新,提高资源利用率。③个人:学习和宣传环保知识,践行低碳生活方式;从身边小事 做起,落实环保行动;积极向有关部门献计献策:勇于同各种破坏生态环境的行为作斗 争等。(3) 有一种习惯叫光盘,有一种意识叫珍惜,有一种美德叫节约;我们要尊重汗水和创 造,弘扬中华民族勤俭节约的传统美德等。(言之有理即可)(4) 答案示例:王经理,您好。我是“光盘行动”的志愿者,看到咱们酒店的餐饮浪费 比较严重,冒昧给您提个建议,您能否让服务员在点菜时提醒顾客要适量(为顾客提供 “半份菜”“小份菜”),以减少浪费,希望您能采纳。
7.最近, 国内多地报告发现了入侵物种——加拿大一枝黄花。它最开始是作为一种 观赏植物被引入中国, 却由于繁殖能力强大, 导致周围其他植物的区域性灭绝, 带 来严重的生态危害。对此,下列建议你认为合理的是 ( )①将野外的一只黄移植回家放在阳台观赏②发现可疑物种及时向有关部门报告③加大宣传教育和引导,帮助公众认识和辨别④积极开展集中灭除行动A.①②③ B.①②④ C.①③④ D.②③④ 8.无论是黄河长江“母亲河”,还是碧波荡漾的青海湖;无论是南水北调的世纪工 程,还是塞罕坝林场的“绿色地图”;无论是云南大象北上南归,还是藏羚羊繁衍 迁徙……这些都昭示着人不负青山,青山定不负人。这说明 ( )①人与自然相互依存,共生共荣 ②生态兴则文明兴,生态衰则文明衰③环境恶化加自然灾害的发生 ④绿水青山就是金山银山A.①②④ B.①②③ C.②③④ D.①③④
1. 电影《长津湖》再现了抗美援朝战争中长津湖战役的全貌,展现了志愿军战士视死如归、英勇无畏的革命精神,折射出中华民族精神谱系的世代传承。中华民族精神是 ( )①以爱国主义为核心的伟大民族精神 ②中华民族维护民族尊严的强大精神动力③当代中国人评判是非曲直的价值标准 ④维系我国各族人民团结奋斗的精神纽带A.①②③ B.①②④ C.①③④ D.②③④2.“一个抛弃了或者背叛了自己历史文化的民族。不仅不可能发展起来,而且很可能 上演一幕幕历史悲剧。”坚定文化自信说法正确的是要 ( )①就要以我为主,坚信中华文化是唯一优秀的文化②坚持以马克思主义为指导③推动中华传统文化创造性转化,创新性发展④不忘本来,吸收外来,面对未来,不断铸就中华文化新辉煌A.①②④ B.②③④ C.①③④ D.①②③④3.2021 年 4 月 9 日,中日韩敦煌文化交流成果展在甘肃敦煌莫高窟陈列中心开 展,此次展览是“2021 东亚文化之都?中国敦煌活动年”的重头戏之一。
第五课“守望精神家园”的主要内容是:了解中华文化的特点、内容;理解 中华优秀的传统文化;新时代传承和发展中国特色社会主义文化;把握文化自信 的重要性并积极增强文化自信;以实际行动践行中华传统美德;理解伟大民族精 神的内涵和作用,积极培育民族精神,做民族精神的建设者、传播者和实践者; 正确认识社会主义核心价值观的重要性,理解社会主义核心价值观的重要性,熟 悉社会主义核心价值观各个层面的价值目标并培育和践行社会主义核心价值观。本课作为本单元的起始课,作为中华优秀传统文化学习主题,帮助学生认识 中华民族五千多年的历史创造了悠久灿烂的中华文明。理解中华民族孝悌忠信礼 义廉耻的荣辱观念,崇德向善、见贤思齐的社会风尚。中华民族屹立于世界东方 熠熠生辉,对一个民族而言,其根基在于文化的力量。中华优秀传统文化是中华 民族在世界文化激荡中站稳脚跟的根基。中华灿烂的文化形成了代代相传的美 德。贯彻十九大六中全会精神:“文化是一个国家,一个民族的灵魂。文化兴国 运兴,文化强民族强。没有高度的文化自信,没有文化的繁荣兴盛,就没有中华 民族伟大复兴。”
( 一) 作业内容《环保倡议书》微型讨论会一、活动步骤1.对全班同学进行分组,每组设置 1 名小组记录员。全班选 1 名主持人。 2.主持人致开场白:环保是对美好生活的向往,有了环保意识就有前行的力量。 同学们,你们的美丽中国梦想是什么呢?学生代表畅所欲言。3.主持人:每个人都应该有自己建设美丽中国的梦想,那么我们建设美丽的中国 梦想是怎样呢?4.主持人:有人说,建设美丽中国梦是国家的事、政府的事;也有人说,建设美 丽中国是每个中国人的事;还有人说,建设美丽中国更是我们一代又一代青少年 的事......小组讨论并选派小组记录员代表发言:谈谈你们小组是怎样倡议建设美丽的中国 梦的?5.教师评价与总结。环保倡议书俗话说靠山吃山靠水吃水,家乡的山山水水是我们生命的摇篮,但是由于过去不 合理的生产方式对生态环境的破坏,子孙后代有可能不能继续在这里生存发展下 去,为了保护和建设美丽家乡,我向乡亲们建议:
这是一项基于素质教育导向的整体式课时作业设计 ,以培育学生课程核心素 养为目标。作业以“解说词”为主要情景,设置了三项任务 ,以知识目标,能力 目标,情感态度与价值观目标为主 ,层层递进,步步深入,通过从“掌握必备知 识,理论联系实际”等 4 个角度对学生作业设计进行评价,以“优秀”“良好”“合 格”三个等级出现。学生通过对《我心中的家园》解说词方式 ,深刻领略到人类 对于自然生存和发展的重要意义 ,增强与自然和谐共生的意识 ,树立绿色发展理 念,加快生态文明建设,打造经济繁荣、生态良好、人民幸福的时代图景。一、单项选择题1.如图为 2022 年冬奥会的会微,以中国书法冬字为主题,将抽象的滑道、冰雪运 动形态与书法巧妙结合,人书合一,天人合一,冬字下面两点顺势融为 2022 生动自然,该会徽既展示了冬季运动的活
1、在中华民族发展的历程中,形成了代代传承的中华传统美德。下列诗句中,体现中华传统美德是 ( )。①苟利国家,不求富贵 ②捧着一颗心来,不带半根草去③天下兴亡, 匹夫有责 ④老吾老以及人之老, 幼吾幼以及人之幼A.①②③ B.②③④ C.①②④ D.①②③④2、戏曲是中国传统文化中的灿烂瑰宝。近年来, 湖北京剧二团坚持开展“戏曲进校园”活动, 举办戏曲知识讲座, 并进行经典戏曲展演, 弘扬和传承了中华 传统文化。下列属于弘扬和传承中华传统文化的有 ( )。①全校举行剪纸活动比赛 ②端午节吃粽子、插艾草、赛龙舟③清明节学校组织学生到烈士陵园祭拜先烈 ④学校开展法治进校园活动A.①②③ B.①③④ C.②③④ D.①②④3、近年来,“沙尘暴”“雾霾”等恶劣天气频频出现,给人们的生产生活产生很大影响。对此下列说法正确的是 ( )。①我们应正确处理经济发展与资源、环境之间的关系
示例二:建设美丽安徽,人人参与,人人共享。(2)【答案】有利于落实节约资源和保护环境的基本国策; 有利于走绿色发展 道路;有利于促进人与自然和谐共生等。(3)【答案】自觉履行节约资源、保护环境的义务; 践行绿色生活方式; 向身 边的人宣传破坏水资源的危害;及时举报各种破坏水资源的违法行为等。【设计意图】加大对中学生资源环境国情教育和生态意识教育培育的力度, 增强 青少年对环境的忧患意识, 引导学生持续关注生态文明建设, 促进人与自然和谐 共生, 是建设美丽中国、实现中华民族永续发展不可或缺的重要一环, 也是促进 中学生全面发展和核心素养培育的内在要求。【作业分析】第(1) 问:写宣传口号,注意两个要求,一是围绕材料;二是语 言言简意赅。第(2) 问:本题考查改善环境的意义,考查运用所学知识分析问题的能力。改 善环境的意义, 可以从基本国策、可持续发展战略、绿色发展理念及道路、人与 自然和谐共生理念等方面作答。第(3)问:本题的落脚点,落实于学生的实际行动,学习、宣传、具体做法。
一、单项选择题1.冰墩墩,是2022年北京冬季奥运会的吉祥物。 将熊猫形象与富有超能量的冰晶外壳相 结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员,充满未 来科技感。冰墩墩寓意创造非凡、探索未来,体现了追求卓越、引领时代,以及面向未 来的无限可能。吉祥物一经面世,就受到了各国人士的普遍喜爱和疯抢。“冰墩墩”的 设计 ( )①说明设计者的灵感来源于生活 ②将传统与现代文化相融合而富有创意 ③说明文化既是民族的,也是世界的 ④说明文化特色越鲜明越有价值和活力A .①②③ B .①③ ④ C .②③ ④ D .①②④ 2.《安徽省“十四五”生态环境保护规划》 (以下简称《规划》)印发。到2025年,全省 将实现生态环境质量持续改善,细颗粒物(PM2.5)浓度总体达标,基本消除重污染天气, 优良天数比率进一步提升;水环境质量全面改善,水生态功能初步恢复。早日重现“一 江碧水向东流”的胜景。我省实现生态环境保护规划的目标需要 ( ) ①先污染后治理 ②走绿色发展道路 ③建设生态文明 ④实现可持续发展A.①②③ B. ①②④ C. ①③④ D. ②③④
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.