易错提醒:利用b2-4ac判断一元二次方程根的情况时,容易忽略二次项系数不能等于0这一条件,本题中容易误选A.【类型三】 根的判别式与三角形的综合应用已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有两个相等的实数根,请判断△ABC的形状.解析:先将方程转化为一般形式,再根据根的判别式确定a,b,c之间的关系,即可判定△ABC的形状.解:将原方程转化为一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有两个相等的实数根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
解:(1)设第一次落地时,抛物线的表达式为y=a(x-6)2+4,由已知:当x=0时,y=1,即1=36a+4,所以a=-112.所以函数表达式为y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,则-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守门员约13米;(3)如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件.常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答.
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
活动目标:1、激发幼儿与同伴交流和分享的兴趣,帮助幼儿获得基本的交流经验。2、鼓励幼儿大方的把自己喜欢的车介绍给大家,并乐于想象未来的车。3、引导幼儿了解自己喜欢的车的名称、样子和用途,并尝试粘贴公共汽车。活动准备:1、请幼儿搜集各种汽车模型并布置成“汽车城”。2、各种汽车图片、小标志。3、录音机、音乐磁带《汽车开来了》、故事《神奇的变形车》磁带。
3、会运用已有的经验解答问题,体验一问一答的乐趣。活动准备:1、认知准备:了解动画片《聪明的一休》及一休的提问;认识“?”符号。2、物质准备:布置科学宫场景(动脑筋爷爷画像,有关动物、植物、自然现象等科学图片、卡片、图书、实物,地球仪、小实验操作用具,及时贴问号符号,小问号娃娃胸饰);有关神秘的地球录像资料,《聪明的一休》音乐磁带、录音机、白磁带。活动过程:一、激发求知兴趣,争当小问号娃娃1、介绍动脑筋爷爷和科学宫。小朋友看,这里是科学官,动脑筋爷爷是最有学问的人了,今天,他要请我们大班的小朋友到科学宫来玩,你们高兴吗?动脑筋爷爷说来这里玩的小朋友发现不懂的总会提出许多的问题,你们如果发现有不懂的该怎么办呢?2、 幼儿争当小问号娃娃,自己佩带小问号胸饰。动脑筋爷爷叫爱提问题的小朋友是小问号,你们谁愿意当小问号?以前,总是老师提问题,今天,是小问号来提问题了。请你们赶快戴上小问号娃娃的标志,自己去看一看,你有什么问题。
活动过程: 一、教师边讲故事边操作磁铁动物玩具,引起幼儿对活动的探究兴趣。 1.师:今天大二班来了两位小客人,它们是……?(小兔子和大老虎)它们俩发生了什么事呢? 2.放录音,教师操作表演动物玩具老虎追兔子,幼儿聆听观看。 3.提问:师:小兔子被老虎追上了吗? 幼:没有追上。 师:老虎为什么追不上小兔子呢? 幼A:因为小兔子跑的快。 幼B:老虎没用呀! 师:这里可藏着一个小秘密呢?有谁发现了吗? 幼A:我发现小兔子自己会跑的。 幼B:老虎追小兔子逃,老虎不跑小兔也不跑了。 幼C:老虎和小兔下有东西。幼D:对,好象是磁铁,上次我在黑板上玩时也有过这样的。 师:好,现在就让我们来研究一下,看一看小兔和老虎到底是用什么做的? (评析:教师首先设置悬念,让幼儿把注意力集中到了两个玩具身上。通过视听活动,以及教师诱导式的提问,使幼儿对活动中的磁铁玩具产生了极大的探究兴趣。) 二、探索磁铁玩具小兔和老虎的结构。 1、用视频仪向幼儿展示玩具的结构。请一幼儿拆开玩具拿到视频下展示。 2、提问:师:你发现了什么? 幼A:有磁铁。 幼B:还有橡皮泥呢! 师:这个玩具是怎么做成的呢? 幼A:把一张动物卡片,插在橡皮泥上,然后把泥嵌在磁铁的洞洞里。 幼B:先放泥到磁铁,再插上动物卡。 师:到底用什么方法最好,让我们来自己动手试一试,做一做吧!(评析:视频展示玩具,让幼儿亲眼看到了玩具的结构,探索到了制作的方法,这是幼儿的一次自主活动。他们对老师的玩具十分好奇,很想马上知道是怎么做的。所以在这一环节中幼儿的积极性很高,探求知识的欲望十分强烈。 三、幼儿大胆操作探索制作磁铁玩具。 1、师:老师已经给你们准备好了制作需要的材料,小朋友可以自己动手做两个玩具,做好后可以玩一玩两个动物你追我逃的游戏。2、幼儿动手操作,教师巡回观察和适当指导幼儿制作,鼓励幼儿遇到困难自己想办法解决。 师:动动脑筋,想想办法,怎样才能用一只手操作,让两个动物一个追一个逃?(评析:整个环节满足了幼儿好动的欲望,幼儿通过自己的尝试、探索制作出了属于自己的玩具。锻炼了幼儿的动手能力。但幼儿由于对磁铁的相斥特性不了解,好多人出现了困难。但是,只有当困难来临时,才能鼓励他们大胆提出疑惑,让幼儿继续深入探索磁铁的秘密。)
二、活动过程: 1、教具:5、6、7、8、9、10的实物卡片共6张。 2、学具:幼儿用书,铅笔每人一份。三:活动过程:1、集体活动。 (1)目测数群,感知10以内的数。 教师分别出示实物卡片,引导幼儿观察图片,说一说:图片上有什么?有多少?L你是怎么看出来的?教师带领幼儿一一点数,并说出物体的总是。 (2)学习按群测数。 教师启发幼儿用“合起来”的方法说出总数,想一想:还可以用什么方法很快能知道有多少个x x?说一说:你们觉得这几种方法,哪一种方法最快?为什么?组织幼儿讨论得出结论。 教师带领幼儿看5的实物卡片,启发幼儿用“合起来”的方法说出总数。教师引导幼儿观察6——7的实物卡片,鼓励幼儿自己用这种办法说出总数。教师借助手势,启发幼儿用手画圈表示总数。
各位老师:大家好!今天我说课的主题队会题目是《环保伴我行》。下面我将从本次队会开展的活动背景、活动目标、活动准备、活动过程、队会反思五方面进行说课。一、活动背景当今世界气候变化异常恶劣,环境污染日益严重,这已经深深地影响到了人们的生产和生活。为了积极应对气候变化,世界各国都在努力。中国从政府到公民,一直致力于环境保护,全国再掀环保热潮,同时为响应湄潭县正在进行的《创建国家环境保护模范城市》的活动。本次活动以孩子们喜欢的主题班队会的形式开展。对孩子们进行环境教育, 帮助他们行成良好的环境保护习惯。树立环保意识,共筑中国梦!二、活动目标1、通过活动,唤起学生对日益遭受破坏的地球环境的清醒认识,从小树立环保意识。2、激发学生爱环境的情感,理解“保护环境,人人有责”的深刻内涵。3、 让学生从自我做起,爱护环境,在生活中能养成环保的习惯, 以实际行动为中国少年先锋队增光添彩,做一名合格的、光荣的中国少年先锋队队员。重点:激发学生爱环境的情感,理解“保护环境,人人有责”的深刻内涵。难点:唤起学生对日益遭受破坏的地球环境的清醒认识,从小树立环保意识。三、活动准备1、召开班干部会议,阐明保护环境的重要意义,为举行此次主题班会做好思想准备。2、带领学生参观湄潭县自来水厂,气象站,了解与环保相关的知识。3、 成立 四个小队并组织实践 ,进行角色分工(每队正副队长各一名),收集有关的环保图片,诗歌等资料。 最后以少先队活动课的形式展示成果。
当今社会是一个高度文明、日益繁华的社会,但是环保现状却不容乐观。走在街道和马路上,人们丢弃的垃圾和白色污染随处可见,工厂的排污排气的状况日趋严重,森林里砍伐树木、滥杀野生动物现象比比皆是,人们的环保意识淡薄……地球已经向人类发出了严重的警告!我感觉产生问题的主要原因是以下这些:现在的人们都喜欢豪华的装修,精美的家具,而实木家具则是最流行的家具,因此,一些商贩们为了赚钱就大量的砍伐树木,使树木的数量大为减少。还有的人们为了品尝新鲜的野味,穿戴高贵的皮草,导致那些黑心的捕猎者滥捕滥杀野生动物。城市里的人们为了快捷、省时,纷纷购买私家车为代步工具,可汽车排出的尾气却严重污染了环境。对于这些情况,我为大家提出以下几条建议:一、讲究卫生,保持环境清洁,尽量不使用一次性物品,如塑料袋、一次性筷子、纸杯等。二、保护自然环境,多植树,少砍伐。三、爱护野生动物、严禁捕杀,更不要以野生动物为桌上菜肴。
活动目标 1、尝试分辨爸爸妈妈和宝宝的物品,感知物品的大小及其它特征。 2、学会按爸爸妈妈和宝宝的图片标记匹配相应的物品。 1、有初步地关心爸爸妈妈的情感体验。 活动准备: 教具:爸爸妈妈和宝宝的图片各一张,三个人的袜子、衣服等衣物若干。 学具:《幼儿用书》人手一册。 活动过程: 1、这是谁的衣服。 出示爸爸妈妈和宝宝的图片,向幼儿介绍:这是宝宝的一家。引导幼儿观察并说出谁是爸爸,谁是妈妈,谁是宝宝,你是怎么看出来的。 出示实物衣服、裤子等服装图片,请幼儿说说这些是什么?有什么不同?这是谁的衣服?你是怎么知道的?
1.游戏活动导入:小朋友,你们喜欢老师吗?说说为什么?你们喜欢小青蛙吗?今天老师给大家带来了一位新朋友,它是一只小青蛙,这只青蛙本来以为自己最能干、最漂亮,可是今天,它突然对自己失去了信心。这到底是怎么回事?让我们一起来听一听。师幼儿共同欣赏故事《我喜欢我自己》。2.游戏活动准备:(1)出示课件,欣赏故事青蛙听了心里很难过。(2)教师:青蛙为什么会难受?教师:别人会的本领它不会,所以它难过,那么它有没有别人不会的本领呢?青蛙听了心里很难过,它难过的哭了起来。(3)教师讲述故事的结尾。教师:山羊公公对青蛙说什么?后来,青蛙还难过吗?(4)青蛙听了说:“是啊,我就是青蛙,会做青蛙做的事,朋友们都喜欢我,我也喜欢我自己。”青蛙回到池塘里,高兴的唱起歌来!
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。