(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
(2) 厦门经济特区成立40年来,在各项事业上都实现历史性跨越和突破, 为国家建设做出重要贡献。 厦门的发展表明当代中国最鲜明的特色是( )A.创新发展 B.经济建设 C.可持续发展 D.改革开放(3) 下列选择中,有利于解决我国当前社会主要矛盾的是( )①以经济建设为中心,解放发展生产力②坚持全面深化改革,实施创新驱动发展③推进城乡一体化发展,实现区域同步发展④兜住民生底线、补齐民生短板、办好民生实事A.①②③ B.①②④ C.①③④ D.②③④(4) 2021是 “十四五” 的开局之年。这一年,我国的战略科技力量发展加 快,改革开放推向纵深,民生得到有力和有效的保障,生态文明建设持续推进,┉┉ 。下列时事与此描述相符合的有 ( )①举行第四届中国国际进口博览会②退休人员的基本养老金实现17连涨③正式提出2030碳达峰和2060碳中和战略目标④成功举办24届北京冬奥会和13届北京冬残奥会A.①②③ B.①②④ C.①③④ D.②③④A.治国有常,而利民为本 B.民相亲在于心相通C.君远相知,不道云海深 D.人而无信,不知其可也
【作业分析】本题考查创新改变生活。防雨神器自动收晾衣服的灵感来源是下 雨忘记收衣服被批评,体现创新是来源于生活、来源于实践。“智能晴雨棚”打 破了传统的只能晾衣服的常规。而由教材内容可知,创新是改革开放的生命, 改革在不断创新中提升发展品质,所以②错误;故本题选 C2. (改编) 利用“安康码”自动定位,即可监测附近新冠肺炎感染病例发病点; 通过输入自己的手机号码,即可通过“通信大数据卡”判断自己是否到访过高 危地区;通过皖事通 APP“密接人员自查”即可查询自己是否曾与新冠肺炎感染 患者接触……疫情发生以来,大数据、健康码、无人机、机器人、测温仪等众 多科技创新成果纷纷登场,助力疫情防控,提高了抗击疫情的精准化水平。这 表明 ( )①标志着我国已经成为科技强国②实施创新驱动发展战略成效显著③创新应成为国家发展进步的中心工作④创新的目的是增进人类福祉,让生活更美好A.①② B.②③ C.①④ D.②④【评价实施主体】教师【评价标准】D【作业分析】本题考查科技创新改变生活中创新的重要性。我国现在还不是科 技强国,但科技自主创新能力不断增强,所以①说法错误。
总体评价结果: 。(四)作业分析与设计意图这是一项基于素质教育导向,以培育学生课程核心素养为目标的整课时作业设计。第一题作业以连线题的方式呈现。学生通过连线题掌握必备基础知识,完成教材知识的 整理和分析。第二题作业以演讲提纲的方式呈现。通过该题业设计与实施,引导学生了解中国科技创 新的现状,感受自主创新的重要性,探究如何为建设创新型国家而努力。引导同学们知道国 家的创新青少年责无旁贷,增强为国家创新做贡献的责任感和使命感,增强民族自尊心和自 豪感,增强政治认同。六、单元质量检测( 一) 单元质量检测内容1.单项选择题(1)要弘扬改革创新精神,推动思想再解放、改革再深入、工作再抓实,凝聚起全面深化 改革的强大力量,在新起点上实现新突破。下列关于改革开放的认识正确的有 ( )①改革开放是强国之路②改革开放推动了全世界的发展③改革开放解决了当前中国的一切问题
作业 2 观看视频设计分析:学生通过观看 2022 年中国冬奥会厨房机器人感 受到祖国充满创新的高科技风格, 感受祖国的强大, 激发学生的民族自豪感, 自 信心。作业 2 观看视频设计意图:激发学生的学习的热情, 培养创新精神, 提高创 新能力,树立远大的理想。(五) 作业实施与反思作业 1:通过新闻点评, 感受祖国的航天事业的蓬勃发展, 激发学生的爱国 情怀, 考查学生对于创新价值的理解, 对于国家创新文化的自豪感以及对于国家 创新发展的自信。考查学生辩证看待问题的能力和自觉践行创新的能力, 激励学 生有意识地在日常生活中培养自己的创新能力。作业 2:通过观看视频, 2022 年中国冬奥会厨房机器人,智能化运用到生 活中, 机器人学生更关注, 更有兴趣, 从而激发学生学习的热情, 培养学生创新 的热情, 提高创新的能力。感受中国创新成就中培养民族自豪感,形成国家观、 世界观,培养民族担当意识,树立远大理想。
10.2022 年 4 月 16 日 9 时 56 分,太空“出差”的 3 名宇航员安全顺利出舱,重 回地球的怀抱,神舟十三号载人飞船实现了多个“首次”,不断刷新中国航天 科技的新纪录,展现了中国航天科技的新高度,再次向世界展现出自信和自强。 这份自信的根源是 ( )A.弘扬了中国精神 B.坚持了中国特色自主创新道路C.凝聚了中国力量 D.坚持了中国特色社会主义道路、理论、制度和文化二、非选择题【春晚传情 中华同心】11.“你是中国的母亲,孕育着中国的奇迹,牵系千百年的呼吸,澎湃着中国的 生命 … … ”,虎年春晚,来自海峡两岸暨香港、澳门的四位歌手共同演唱的歌曲 《黄河长江》,唱得大家心潮澎湃。歌曲中,情感深沉的歌词,字字饱含着对祖 国山河的热爱;高亢激昂的旋律,传递出黄河长江穿越古今的力量。(1) 海峡两岸和香港、澳门的四地歌手在春晚的舞台上携手共唱、深情演绎, 向我们传递了怎样的信息?(2) 为了促进海峡两岸和香港、澳门四地的文化相融,你可以提出哪些合理化 建议?
(一) 课标要求中华文化崇尚和谐,蕴含着天人合一的宇宙观、协和万邦的国际观、和而不 同的社会、人心和善的道德观。中国梦是中华民族团结奋斗的最大公约数和最大 同心圆。本单元将“建设和谐中国”作为社会主义核心价值观教育的主题,指出 和谐是国家高强、民族振兴、人民幸福的重要保证,追求和谐价值是中国梦的应 有之义,做自信中国人是对实现中国梦的主体的要求。九年级学生对我国是个多民族国家、中华民族大家庭、维护和促进民族团结 等问题已经具备一定的知识积累。学生能够从爱国情感出发反对分裂,反对暴力 恐怖活动,反对非正义战争,反对阴谋颠覆国家的行为。学生基本了解香港、澳 门回归和台湾问题的史实,对实现祖国统一有着与成人同样的期盼。但是,部分 学生的中华民族共同体意识相对较弱,对于在新时代如何促进民族团结思考不 深。同时,由于大多数学生缺少反对分裂的相关生活,因此,对经验反对分裂的 迫切性、必要性认识不够。部分学生对香港、澳门在新形势下如何继续保持繁荣 稳定、新形势下如何实现两岸统一等问题关注不多。
法治与我同行。宿州市某校 901 班举行“法治头条”交流活动, 同学们分享 了许多法治新闻。◇2016 年 9 月 12 日, 国务院新闻办公室发布《中国司法领域人权保障的新 进展》白皮书。白皮书指出, 中国落实罪刑法定、疑罪从无、非法证据排除等法 律原则,积极防范和纠正冤假错案。◇2018 年 3 月 11 日, 十三届全国人大一次会议通过《中华人民共和国宪法 修正案》。◇2020 年 10 月 17 日,十三届人大常委会第二十二次会议通过《中华人民 共和国生物安全法》,使我国生物安全风险防控有法可依。◇2021年 8 月 20 日, 十三届全国人大常委会第三十次会议表决通过《中华 人民共和国个人信息保护法》,这部法律充分回应了社会关切,为破解个人信息 保护中的热点难点问题提供了强有力的法律保障。◇2022 年 1 月 1 日, 由十三届人大常委会第三十一次会议表决通过的《中 华人民共和国家庭教育促进法》正式实施。该法将家庭教育由传统的“家事”上 升为新时代的重要“国事”。1.探究与分享:请学生思考或分组讨论每一条法治新闻对社会生活的影响, 分析其进步之处,并交流分享自己的感悟。2.查找资料,说一说保护未成年人的法律有哪些。3.制作一份“法治与我同行”的手抄报,展示在学校或班级的法治栏内。要求: 在制作手抄报的过程中, 思考: (1) 法治的作用; (2) 优秀手抄报的 评判标准。
2.认同民主是具体的, 能够根据本国的国情看待民主实现的方式, 积极主动 参与民主生活,培育民主意识,形式民主权利。3.体会法治在社会中的作用, 认同法治价值观, 感受法治中国的进步, 坚定 走中国特色社会主义法治道路的信念。4.感受见识法治中国是全体社会成员的共同责任, 并树立法治意识, 自觉尊 法学法守法用法,践行法治精神。四、单元作业设计思路(一) 单元作业设计基本原则1.作业设计应全面地反映知识与技能、过程与方法、情感与价值这个三维目 标。在有效作业设计中, 应重视教材学习材料的深度挖掘编写出相应题目, 以促 进学生从课堂学习中获取必要的认识经验, 通过过程获得感受, 通过活动得到一 定的体会,通过探索得一些感悟。2.作业设计应考虑学生的参与度。分层设计, 让不同层次的学生有选择地训 练,可有效地避免不做练习或抄作业现象,大大提高学生的参与度。3.控制作业的时间限度, 少时高效。控制课后作业时间, 关注学生身心健康, 促进学生全面发展。
(三) 学情分析初中阶段的学生正处在世界观、人生观、价值观形成的关键时期, 加强对这 一年龄段学生的法治教育尤为重要。随着学生生活范围的延展和能力的提升, 本课程的学习逐步扩展到国家和社 会。从生活经验看, 大部分中学生有参与班干竞选、给班级或学校提建议的经验。 从知识储备看, 学生在八年级下册已经学习了我国的根本政治制度、基本政治制 度, 故学习本课知识已经具备了一定的理论基础。但如何理解民主, 还需要通过 不断的学习来建立认同。另外七八年级也打下了一定的法律基础, 学生已经初步 了解个人的成长和参与社会生活必备的基本法律常识。本单元第三课通过介绍社会主义民主制度的确立过程, 中国特色社会主义民 主的本质和实现方式, 引领学生理解社会、参与公共生活, 帮助学生认同民主的 价值,引导学生做负责任的公民。第四课阐释法治是什么、回顾法治中国的历程、 明确为什么选择中国特色社会主义法治道路、怎样建设法治中国及初中生在法治 中国的建设中应扮演怎么样的角色等问题, 帮助学生认识法治中国的进程, 引导 学生正确看待法治中国建设进程中出现或可能出现的问题, 进而把法治作为基本 的生活方式,在实践中培育法治观念。
4.2021 年是我国航天事业创建 65 周年,也是收获满满的一年,从“两弹一星”到“神舟” 载人,从“北斗”指路到“嫦娥”奔月、“天问”探火,从无人飞行到载人飞行,从舱内 实验到太空行走,从太空短期停留到中长期驻留……这说明 ( )①我国科技发展水平总体较高②我国综合国力和自主创新能力不断增强③我国实行科教兴国战略取得了显著成效④我国科技在某些尖端领域居于世界领先地位A.①②③ B.①②④ C.①③④ D.②③④5.中国工程院院士张伯礼在讲述他赴武汉抗疫故事时这样感慨:“科学研究是一个养兵千日、 用兵一时的创新事业。”围绕疫苗研发,各攻关团队日夜奋战,在尊重科学、保障安全的 前提下,最大限度缩短研发时间,为本国和全球应对新冠肺炎疫情提供有力支撑。我们在防疫科研人员身上看到 ( )①造福人类的济世情怀 ②律己宽人的处事原则③沟通合作的团队精神 ④见利思义的高尚情操A.①② B.①③ C.②④ D.③④
2、内容结构本单元由导语、第七课“中华一家亲”、第八课“中国人中国梦”组成。每 课各设两框。单元导语首先对“和谐”的内涵作了分析。其次,导语阐明中华民 族是一个大家庭,我们要像爱护自己的眼睛一样爱护民族团结,要加快民族地区 经济社会文化发展,促进民族团结。我们要坚持“和平统一、一国两制”基本方 针,实现祖国统一。再次,导语揭示了中国梦的意义和价值,提出实现中国梦的 客观要求。最后,导语将中国梦的实现与当今时代相关联,阐明了实现中国梦与 做自信中国人的内在联系,提出青少年要与祖国和时代共成长的现实命题。第一框“促进民族团结”。第一 目介绍了我国多民族的基本国情和我国的民 族政策,重点落在“加强和巩固民族团结,维护祖国统一,是中华民族的最高利 空。第二目通过事实描述、原因分析,阐述民族地区经济社会文化建设取得重大 成就、人民生活不断改善的事实,引导学生分析取得这些成就的原因,重点落在 “维护和促进民族团结,是每个公民的辨圣职责和光荣义务”。本框从我国多民 族的国情以及民族地区经济、社会和文化发展的角度谈民族团结的重要意义,为 下一框讲述“维护祖国统一”打下基础。
2 . 内容内在逻辑第七课 《中华一 家亲》 主要介绍了我国的民族政策和解决港澳台问题的基本 方针的基础上 , 进一步阐述新中国成立以来为促进民族的繁荣我国在少数民族地 区发展上所实施的举措以及为实现祖国的统一我们所做的努力; 第八课 《中国人 中国梦》 是九年级上册最后一课 。在介绍了经济建设 、政 治建设 、文化建设 、社 会建设 、 生态文明建设等内容后 , 本课对九年级上册内容 进行了总结与升华 。第七课第一 框 “促进民族团结”主要是帮助学生了解我国的民族政策 , 为促 进民族繁荣所采取的举措及成效 , 明确维护民族团结是我们应尽的责任 。第二框 “维护祖国统一 ”主要是帮助学生理解维护祖国统一 、 反对分裂的原 因及做法 , 帮助学生了解 “一 国两制”的基本内容及现实意义 , 特别是关于台湾 问题的解决 , 让学生明确维护国家统一是每个公民的神圣职责 。
①政府的宗旨是全心全意为人民服务②政府要坚持依法行政,努力建设法治政府③行政机关要保障公民的知情权、参与权、表达权、监督权④人民可以随心所欲地点评政府的工作A. ①②④ B. ②③④ C. ①②③ D. ①③④9. 在道德与法治课堂上,赵老师为大家展示了下列案例,同学们对此作出了解 读。其中正确的有( )①市人大常委会召开立法听证会-科学立法②刘某经营餐馆却没有办理营业执照-全民守法③执法机关检查疫苗企业生产经营状况-严格执法④人民法院在审理案件时进行庭审直播-公正司法A. ①②③ B. ①③④ C. ①②④ D. ②③④10. 某校学生以“全民守法,中学生在行动”为主题开展了法治情景剧 、法治海 报、模拟法庭等活动。这些活动加深了学生们对法律的认识, 提高了学生们的法 律意识。下列选项中,中学生应该做的是( )①看到有人跌倒立即上前帮助 ②利用假期到社区清除小广告③努力为法治中国建设贡献力量 ④敢于并善于同违法犯罪行为作斗争A. ①② B. ②③ C.②④ D. ③④