老师、同学们:大家早上好!在这乍暖还寒、春寒料峭的日子里,我们走进充满春天气息的三月。三月,是春风和煦、万木吐绿、百花盛开、欣欣向荣的美好季节,也是我们同学们长知识、长身体的最佳时节。我们一定要在这个美好的时节,珍惜每一寸光阴,听好每一堂课,做好每一道习题,吸收消化好每一点知识,不负这大好春光。三月,是文明礼貌月,我们每一个同学,要用自己的实际行动,播撒文明的种子,掀起文明的新风。说文明话,做文明事,当文明人。让清新的春风春雨洗涤我们的心灵,让一切野蛮、粗俗、丑陋的言行在我们身边消失。你的一句礼貌的问候,会给同学、老师带来如春风般的温暖;你弯腰从地上拣起一片纸屑,会给我们美丽的校园带来一片文明的春色。
同学们,老师们:早上好!我今天讲话的主题是:交上理想的答卷。再过一个星期,期中考试的战鼓又敲响了。同学们有没有信心再打一次胜仗?是的,每一个学期开始,我们都要播种,每一个学期结束,我们都要收获!一学期的学习就像一场马拉松比赛一样,我们又迎来了最后的冲刺。那么怎样才能使自己的学习走向成功,在期末考试中交上一份理想的答卷呢?德国有一位哲学家海德说过:春天不播种,夏天就不会生长,秋天就不会有收获,冬天就不能有品尝。我个大家讲一个小故事,有两位年纪70岁的老太太,一位认为到了这个年纪可算是人生的尽头,于是便开始料理后事;另一位却认为一个人能做什么事不在于年龄的大小,而在于怎么个想法。于是,她在70岁高龄之际开始学习登山,其中几座还是世界上有名的。就在不久前还以95岁高龄登上了日本的富士山,打破攀登富士山年龄最高的纪录。她就是著名的胡达·克鲁斯老太太。70岁开始学习登山,这是一大奇迹。一个人能否成功,就看他的态度了!一个人如果,积极思维、喜欢接受挑战和应付麻烦事,那他就成功了一半。胡达·克鲁斯老太太的壮举正验证了这一点。
尊敬的老师、亲爱的同学们:大家好!在这秋高气爽的日子里,我们送走了祖国母亲的64岁生日。泱泱中华五千年,那滚滚的黄河是她澎湃的热血,催人奋进,催人向前;那生生不息的长江是她灵动的脉搏,跳跃着永不枯竭的悸动;那连绵起伏的长城是她挺拔的脊梁,屹立东方,岿然不动……无数的这些都是我们祖国母亲的象征,它们记载了母亲无数的沧桑,它们是一种永不灭的精神!我不禁要大声说:中国,我为你骄傲,为你自豪!实验高中即将迎来5岁生日,虽然只有两届毕业生,年轻实验高中已向祖国的各大城市输送了千多名优秀的大学生,特别是XX年为中国最高学府——北京大学输送了一名优秀的学生。今天,看到国旗冉冉升起,过去的岁月浮现在眼前。1949年的10月1日,伟大领袖毛主席在开国大典上庄严宣告:“中国人民从此站起来了!”它向世人昭示:告别了一个旧世界,迎来了一个新世界的中国人民,从此人人平等,当家作主,成为国家的主人;实验高中XX年高考一炮打响,XX年再创辉煌,使实验高中成为一所名副其实的会泽名校,XX年的高考600分人数到全市57所高(完)中第5名的佳绩。
同学们,大家知道一月一日是什么节日吗?是的,就是元旦,新年的第一天,我们即将进入XX年。时间过得真快啊,一眨眼,XX年就这样飞快地从我们身边溜走了,我们也迎来了崭新的XX年。回顾过去的一年,我们每个小朋友都在成长,都在进步,学习上,我们在老师辛勤的教导下,又掌握了许多新的知识;生活上,我们的自理能力又得到了很大的提高。在各项比赛中,我们的同学奋力拼搏,都取得了比较优异的成绩。我们每天大课间都锻炼身体,使我们的身体锻炼得棒棒的。本学期,我们开展了心理节活动,同学们学会了正确对待学习压力,遇到问题多与家长、老师沟通,多与同学交流,做积极向上的阳光少年。过去的成绩只能代表过去,现在我们迎来了新的一年,在新的一年里,我们又要确定新的目标,使自己各方面都取得更大的成绩。
在日常工作中用心努力地做好每件事,争取把问题想周到,尽量使自己能做到事半功倍的效果。在财务工作中我始终以提高工作效率和工作质量为目标,力争做到总公司和分公司财务制度统一,积极主动地了解各分公司财务工作中出现的问题,及时上报,及时解决。使得各分公司人员按照_总公司的制度和标准完成每项工作,熟练掌握工作流程,坚持按财务制度办事,保持头脑清醒,及时掌握各公司签订合同和收付工程款项等情况。在工作中发现问题,解决问题,采纳大家提出的合理化建议。
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
亲爱的家长、老师、小朋友们:早上好!我是草莓二班的李老师。你们知道明天是几月几号吗?那你知道它是什么节日吗?3月8号是三八国际妇女节,又称妇女节,是妈妈、奶奶、阿姨、老师等女人的节日。三八国际妇女节是世界各国妇女争取和平、平等、发展的节日。 1912年3月8日是第一个国际妇女节。从1975年起国际妇女开始庆祝国际妇女节。我们中国第一次纪念“三八”妇女节是在1924年。中华人民共和国成立之后,中央人民政府政务院于1949年12月通令全国,定3月8日为妇女节,今年已经是第102个妇女节了。
各位同学,各位老师,早上好!伴着清晨的缕阳光,我们又迎来了新的一天,新的一周。今天我讲话的主题是:以积极的态度迎接期末考试 。开学到现在已近一个学期了,四个月来,老师们克服了很多困难,认真地备课、上课、批改作业、辅导学生;我们同学认真地听课、按时完成作业、积极参加各项活动,确保了学校教学工作的顺利展开。一转眼,今天已经是第十八周的星期一了,下周的星期二将举行语文、数学的期末考试,星期三将举行英语的期末考试。期末考试是学校教学工作中的一件大事,它是评估一学期来教学质量和学习质量的一种重要手段,期末考试的学科成绩是衡量教师教学质量和学生学习质量的主要依据之一。因此全体师生思想上要高度重视期末考试考试,认真复习,作好充分准备,力争在期末考试中取得优异成绩,为此特向全体师生提出如下三点要求:1,要求全体老师要根据期末考试的特征,根据本学科的特点,结合学生的实际精心备好每一节复习课,认真上好每一节复习课,系统整理一学期来的知识体系,供学生复习使用。同时要做好基础薄弱学生和学有困难学生的思想工作,切实加强这些同学的辅导工作,做好考试方法的指导工作,激发他们的信心,努力使他们在原有的基础上有所提高。
各位同学,各位老师,早上好!伴着清晨的第一缕阳光,我们又迎来了新的一天,新的一周。今天我讲话的主题是:以积极的态度迎接期末考试 。开学到现在已近一个学期了,四个月来,老师们克服了很多困难,认真地备课、上课、批改作业、辅导学生;我们同学认真地听课、按时完成作业、积极参加各项活动,确保了学校教学工作的顺利展开。一转眼,今天已经是第十八周的星期一了,下周的星期二将举行语文、数学的期末考试,星期三将举行英语的期末考试。期末考试是学校教学工作中的一件大事,它是评估一学期来教学质量和学习质量的一种重要手段,期末考试的学科成绩是衡量教师教学质量和学生学习质量的主要依据之一。因此全体师生思想上要高度重视期末考试考试,认真复习,作好充分准备,力争在期末考试中取得优异成绩,为此特向全体师生提出如下三点要求:第一,要求全体老师要根据期末考试的特征,根据本学科的特点,结合学生的实际精心备好每一节复习课,认真上好每一节复习课,系统整理一学期来的知识体系,供学生复习使用。