2 . 内容内在逻辑第七课 《中华一 家亲》 主要介绍了我国的民族政策和解决港澳台问题的基本 方针的基础上 , 进一步阐述新中国成立以来为促进民族的繁荣我国在少数民族地 区发展上所实施的举措以及为实现祖国的统一我们所做的努力; 第八课 《中国人 中国梦》 是九年级上册最后一课 。在介绍了经济建设 、政 治建设 、文化建设 、社 会建设 、 生态文明建设等内容后 , 本课对九年级上册内容 进行了总结与升华 。第七课第一 框 “促进民族团结”主要是帮助学生了解我国的民族政策 , 为促 进民族繁荣所采取的举措及成效 , 明确维护民族团结是我们应尽的责任 。第二框 “维护祖国统一 ”主要是帮助学生理解维护祖国统一 、 反对分裂的原 因及做法 , 帮助学生了解 “一 国两制”的基本内容及现实意义 , 特别是关于台湾 问题的解决 , 让学生明确维护国家统一是每个公民的神圣职责 。
(三) 学情分析初中阶段的学生正处在世界观、人生观、价值观形成的关键时期, 加强对这 一年龄段学生的法治教育尤为重要。随着学生生活范围的延展和能力的提升, 本课程的学习逐步扩展到国家和社 会。从生活经验看, 大部分中学生有参与班干竞选、给班级或学校提建议的经验。 从知识储备看, 学生在八年级下册已经学习了我国的根本政治制度、基本政治制 度, 故学习本课知识已经具备了一定的理论基础。但如何理解民主, 还需要通过 不断的学习来建立认同。另外七八年级也打下了一定的法律基础, 学生已经初步 了解个人的成长和参与社会生活必备的基本法律常识。本单元第三课通过介绍社会主义民主制度的确立过程, 中国特色社会主义民 主的本质和实现方式, 引领学生理解社会、参与公共生活, 帮助学生认同民主的 价值,引导学生做负责任的公民。第四课阐释法治是什么、回顾法治中国的历程、 明确为什么选择中国特色社会主义法治道路、怎样建设法治中国及初中生在法治 中国的建设中应扮演怎么样的角色等问题, 帮助学生认识法治中国的进程, 引导 学生正确看待法治中国建设进程中出现或可能出现的问题, 进而把法治作为基本 的生活方式,在实践中培育法治观念。
6.家书,蕴含着家风、家训、家教,也承载着社会记忆和文化传承,为此,阜阳市第 十七中学开展了“一封家书致父母”主题活动。开展这一活动 ( )A. 旨在引导学生传承传统美德 B.表明文明因交流而丰富多彩C.是全面继承传统文化的体现 D.显示了中华文化是最优秀的7.2021年7月25日,我国世界遗产提名项目“泉州:宋元中国的世界海洋商贸中心”顺 利通过联合国教科文组织第44届世界遗产委员会会议审议,成功列入《世界遗产名 录》。至此,我国世界遗产总数升至56项。“泉州:宋元中国的世界海洋商贸中心” 成功申遗( )A.体现了中华优秀传统文化是世界上最优秀的文化B.说明了传统文化是一个国家兴旺发达的不竭源泉C.是保护和传承中华优秀传统文化的最佳途径D.能够进一步增强中国人民的自豪感,坚定文化自信8.三星堆遗址新发现6座“祭祀坑”,现己出土重要文物500余件。
7.最近, 国内多地报告发现了入侵物种——加拿大一枝黄花。它最开始是作为一种 观赏植物被引入中国, 却由于繁殖能力强大, 导致周围其他植物的区域性灭绝, 带 来严重的生态危害。对此,下列建议你认为合理的是 ( )①将野外的一只黄移植回家放在阳台观赏②发现可疑物种及时向有关部门报告③加大宣传教育和引导,帮助公众认识和辨别④积极开展集中灭除行动A.①②③ B.①②④ C.①③④ D.②③④ 8.无论是黄河长江“母亲河”,还是碧波荡漾的青海湖;无论是南水北调的世纪工 程,还是塞罕坝林场的“绿色地图”;无论是云南大象北上南归,还是藏羚羊繁衍 迁徙……这些都昭示着人不负青山,青山定不负人。这说明 ( )①人与自然相互依存,共生共荣 ②生态兴则文明兴,生态衰则文明衰③环境恶化加自然灾害的发生 ④绿水青山就是金山银山A.①②④ B.①②③ C.②③④ D.①③④
1. 电影《长津湖》再现了抗美援朝战争中长津湖战役的全貌,展现了志愿军战士视死如归、英勇无畏的革命精神,折射出中华民族精神谱系的世代传承。中华民族精神是 ( )①以爱国主义为核心的伟大民族精神 ②中华民族维护民族尊严的强大精神动力③当代中国人评判是非曲直的价值标准 ④维系我国各族人民团结奋斗的精神纽带A.①②③ B.①②④ C.①③④ D.②③④2.“一个抛弃了或者背叛了自己历史文化的民族。不仅不可能发展起来,而且很可能 上演一幕幕历史悲剧。”坚定文化自信说法正确的是要 ( )①就要以我为主,坚信中华文化是唯一优秀的文化②坚持以马克思主义为指导③推动中华传统文化创造性转化,创新性发展④不忘本来,吸收外来,面对未来,不断铸就中华文化新辉煌A.①②④ B.②③④ C.①③④ D.①②③④3.2021 年 4 月 9 日,中日韩敦煌文化交流成果展在甘肃敦煌莫高窟陈列中心开 展,此次展览是“2021 东亚文化之都?中国敦煌活动年”的重头戏之一。
第五课“守望精神家园”的主要内容是:了解中华文化的特点、内容;理解 中华优秀的传统文化;新时代传承和发展中国特色社会主义文化;把握文化自信 的重要性并积极增强文化自信;以实际行动践行中华传统美德;理解伟大民族精 神的内涵和作用,积极培育民族精神,做民族精神的建设者、传播者和实践者; 正确认识社会主义核心价值观的重要性,理解社会主义核心价值观的重要性,熟 悉社会主义核心价值观各个层面的价值目标并培育和践行社会主义核心价值观。本课作为本单元的起始课,作为中华优秀传统文化学习主题,帮助学生认识 中华民族五千多年的历史创造了悠久灿烂的中华文明。理解中华民族孝悌忠信礼 义廉耻的荣辱观念,崇德向善、见贤思齐的社会风尚。中华民族屹立于世界东方 熠熠生辉,对一个民族而言,其根基在于文化的力量。中华优秀传统文化是中华 民族在世界文化激荡中站稳脚跟的根基。中华灿烂的文化形成了代代相传的美 德。贯彻十九大六中全会精神:“文化是一个国家,一个民族的灵魂。文化兴国 运兴,文化强民族强。没有高度的文化自信,没有文化的繁荣兴盛,就没有中华 民族伟大复兴。”
( 一) 作业内容《环保倡议书》微型讨论会一、活动步骤1.对全班同学进行分组,每组设置 1 名小组记录员。全班选 1 名主持人。 2.主持人致开场白:环保是对美好生活的向往,有了环保意识就有前行的力量。 同学们,你们的美丽中国梦想是什么呢?学生代表畅所欲言。3.主持人:每个人都应该有自己建设美丽中国的梦想,那么我们建设美丽的中国 梦想是怎样呢?4.主持人:有人说,建设美丽中国梦是国家的事、政府的事;也有人说,建设美 丽中国是每个中国人的事;还有人说,建设美丽中国更是我们一代又一代青少年 的事......小组讨论并选派小组记录员代表发言:谈谈你们小组是怎样倡议建设美丽的中国 梦的?5.教师评价与总结。环保倡议书俗话说靠山吃山靠水吃水,家乡的山山水水是我们生命的摇篮,但是由于过去不 合理的生产方式对生态环境的破坏,子孙后代有可能不能继续在这里生存发展下 去,为了保护和建设美丽家乡,我向乡亲们建议:
1、在中华民族发展的历程中,形成了代代传承的中华传统美德。下列诗句中,体现中华传统美德是 ( )。①苟利国家,不求富贵 ②捧着一颗心来,不带半根草去③天下兴亡, 匹夫有责 ④老吾老以及人之老, 幼吾幼以及人之幼A.①②③ B.②③④ C.①②④ D.①②③④2、戏曲是中国传统文化中的灿烂瑰宝。近年来, 湖北京剧二团坚持开展“戏曲进校园”活动, 举办戏曲知识讲座, 并进行经典戏曲展演, 弘扬和传承了中华 传统文化。下列属于弘扬和传承中华传统文化的有 ( )。①全校举行剪纸活动比赛 ②端午节吃粽子、插艾草、赛龙舟③清明节学校组织学生到烈士陵园祭拜先烈 ④学校开展法治进校园活动A.①②③ B.①③④ C.②③④ D.①②④3、近年来,“沙尘暴”“雾霾”等恶劣天气频频出现,给人们的生产生活产生很大影响。对此下列说法正确的是 ( )。①我们应正确处理经济发展与资源、环境之间的关系
示例二:建设美丽安徽,人人参与,人人共享。(2)【答案】有利于落实节约资源和保护环境的基本国策; 有利于走绿色发展 道路;有利于促进人与自然和谐共生等。(3)【答案】自觉履行节约资源、保护环境的义务; 践行绿色生活方式; 向身 边的人宣传破坏水资源的危害;及时举报各种破坏水资源的违法行为等。【设计意图】加大对中学生资源环境国情教育和生态意识教育培育的力度, 增强 青少年对环境的忧患意识, 引导学生持续关注生态文明建设, 促进人与自然和谐 共生, 是建设美丽中国、实现中华民族永续发展不可或缺的重要一环, 也是促进 中学生全面发展和核心素养培育的内在要求。【作业分析】第(1) 问:写宣传口号,注意两个要求,一是围绕材料;二是语 言言简意赅。第(2) 问:本题考查改善环境的意义,考查运用所学知识分析问题的能力。改 善环境的意义, 可以从基本国策、可持续发展战略、绿色发展理念及道路、人与 自然和谐共生理念等方面作答。第(3)问:本题的落脚点,落实于学生的实际行动,学习、宣传、具体做法。
教学目标:1、通过观察实物,体会到从不同角度观察物体所看到的形状可能是不同的。2、会辨认简单物体从不同角度观察到的形状,发展空间观念。教学重点:会辨认简单物体从不同角度观察到的形状。教学难点:体会到从不同角度观察到的的形状可能是不同的,发展空间观念。课前准备:实物或图片等教学过程:一、出示玩具汽车,学会观察物体第一步:1、观察玩具汽车,学生分别站在汽车侧面和后面两个不同的方向观察。2、分别把玩具汽车的侧面和后面对着全班,让学生说一说这是谁看到的?3、小结:不同的位置观察同一物时,看到的形状可能是不同的。
问题二:上述问题中,甲、乙的平均数、中位数、众数相同,但二者的射击成绩存在差异,那么,如何度量这种差异呢?我们可以利用极差进行度量。根据上述数据计算得:甲的极差=10-4=6 乙的极差=9-5=4极差在一定程度上刻画了数据的离散程度。由极差发现甲的成绩波动范围比乙的大。但由于极差只使用了数据中最大、最小两个值的信息,所含的信息量很少。也就是说,极差度量出的差异误差较大。问题三:你还能想出其他刻画数据离散程度的办法吗?我们知道,如果射击的成绩很稳定,那么大多数的射击成绩离平均成绩不会太远;相反,如果射击的成绩波动幅度很大,那么大多数的射击成绩离平均成绩会比较远。因此,我们可以通过这两组射击成绩与它们的平均成绩的“平均距离”来度量成绩的波动幅度。
可以通过下面的步骤计算一组n个数据的第p百分位数:第一步:按从小到大排列原始数据;第二步:计算i=n×p%;第三步:若i不是整数,而大于i的比邻整数位j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第i+1项的平均数。我们在初中学过的中位数,相当于是第50百分位数。在实际应用中,除了中位数外,常用的分位数还有第25百分位数,第75百分位数。这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数。其中第25百分位数也称为第一四分位数或下四分位数等,第75百分位数也称为第三四分位数或上四分位数等。另外,像第1百分位数,第5百分位数,第95百分位数,和第99百分位数在统计中也经常被使用。例2、根据下列样本数据,估计树人中学高一年级女生第25,50,75百分位数。
(2)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下。故用中位数来估计每天的用水量更合适。1、样本的数字特征:众数、中位数和平均数;2、用样本频率分布直方图估计样本的众数、中位数、平均数。(1)众数规定为频率分布直方图中最高矩形下端的中点;(2)中位数两边的直方图的面积相等;(3)频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数。学生回顾本节课知识点,教师补充。 让学生掌握本节课知识点,并能够灵活运用。
新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即
二、典例解析例4. 用 10 000元购买某个理财产品一年.(1)若以月利率0.400%的复利计息,12个月能获得多少利息(精确到1元)?(2)若以季度复利计息,存4个季度,则当每季度利率为多少时,按季结算的利息不少于按月结算的利息(精确到10^(-5))?分析:复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息.所以若原始本金为a元,每期的利率为r ,则从第一期开始,各期的本利和a , a(1+r),a(1+r)^2…构成等比数列.解:(1)设这笔钱存 n 个月以后的本利和组成一个数列{a_n },则{a_n }是等比数列,首项a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12个月后的利息为10 490.7-10^4≈491(元).解:(2)设季度利率为 r ,这笔钱存 n 个季度以后的本利和组成一个数列{b_n },则{b_n }也是一个等比数列,首项 b_1=10^4 (1+r),公比为1+r,于是 b_4=10^4 (1+r)^4.
二、典例解析例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请确定d的范围.分析:该设备使用n年后的价值构成数列{an},由题意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}为公差为-d的等差数列.10年之内(含10年),该设备的价值不小于(220×5%=)11万元;10年后,该设备的价值需小于11万元.利用{an}的通项公式列不等式求解.解:设使用n年后,这台设备的价值为an万元,则可得数列{an}.由已知条件,得an=an-1-d(n≥2).所以数列{an}是一个公差为-d的等差数列.因为a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由题意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范围为19<d≤20.9
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B