解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因为NE=AC=a,所以MN=ME+EN=l·tanα+a.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
在全县几千名考生中,他名列第三被录取了。他的学生生涯随着这张录取通知书的到来,也就完全终结了!”为了那个家牺牲的太多,他没日没夜的忙碌着,但是所有的努力都是为了那个家,似乎从来都没有为自己“自私”一下。这就是孙少安,孙家的长子。这个耿直,质朴的农村男子,他善良,能吃苦,有责任心,同时血气方刚,真心地爱着润叶。但是,却因为他身为农家,面对受过高等教育的润叶,爱,却没有勇气,爱,却自卑。他,最终错过了润叶。同样,因为局限的小农意识,他娶了x姑娘,生活便代替了爱情,与一个自己不曾爱过的人过起了柴米油盐的日子,他们相互扶持,紧紧依靠直到老去,一切平淡,生活便是真实的生活了。
⑴内容与结构:每一单元除了关注阅读、写作、听力、视听说等语言实践活动,还关注语言知识、情感态度、文化意识和学习策略等。其中,教材加强了文化意识的提高和学生学习策略的培养,是相较于以前教材很大的不同。 ⑵教材特点与重难点: 首先突出学习者的发展,包括注重学习策略的培养和使用;注重提高学生的语言认知能力;为教师和学生提供个性化的选择;其次努力提高学生用英语进行思维和表达的能力。具体为:为学生提供更多的体验真实语言的机会;精心设计教学活动,使学生看到明确的目标和明确的成果;为学生发展语言运用能力提供详尽的语言支持;重视复现。
知识与技能: 1、让学生联系已有的知识经验,经历将实际问题抽象成式与方程的过程;经历探索和理解分数的意义、性质和分数加、减法计算方法的过程,形成必要的计算技能。 2、让学生在用数对确定位置,认识圆的特征以及探索和掌握圆的周长、面积公式的过程中,获得有关的基础知识和相应的基本技能。 3、经历用复式折线统计图表示相关数据的过程,能进行简单的分析和交流;能按要求完成相关的折线统计图。
二、全面加强班级德育工作 1、德育工作要突出“三义、“五心”“共同”“五爱”教育,培养学生的优良品质。 2、要做到“两个寓于”“三个坚持”及“四个”原则,“五个结合”,全面提高学生思想道德素质,教育学生做一个全面发展,德、智、体、美、劳五育并举的合格学生。 3、要围绕“小学生规范养成教育”和“学困生转化策略”这两个主要德育研究课题,积极开展各类研究活动。
一、指导思想 素质教育的发展,其根本目的是培养学生的全面发展,提高学生的创新思维及创造能力。其核心就是创新能力、实际的动手能力和观察能力等科学素质的培养。由于科学课程承担着培养小学生科学素养的重任,科学课程的内容和课程结构都与学生的生活和经验紧密结合,为学生的终身发展提供必备的基础知识、基本技能和良好的情感发展与价值观。科学课程以创新精神和实践能力为核心,重视发展学生搜集处理信息的能力、自主获取新知识的能力、分析解决问题的能力、交流与合作的能力,其地位在整个小学教育中是越来越重要。因而,学好科学这一课程也显得越来越重要。
1、教案检查制度: 为了消除无教案上课现象,年级部每月进行一次教案检查登记,根据教案数量考核课时津贴,根据备课数量和质量考核当月教案得分。平时考核按10分制。根据备课格式的规范性,备课内容、板面及书写综合评分,上等记为9-10分,中等记为5-8分,下等在5分以下,上等人数不得超过30%。教务处或教研室开学和期末要对教师教案进行检查,并评选出本期优秀教案。 2、作业检查制度: 年级部每月对任课教师的作业布置和批改情况作检查登记,并评定当月得分,按10分制记录。作业率在10%以下记1分,作业率在10%至20%记2分依此类推。但批改不认真的要在基本分上酌情扣分,作业率=作文一次按两次统计。体育音乐课允许无作业,此项评分将根据两操一课活动的开展情况,平时的各种活动开展情况和成绩记录、资料收集等项目进行考核,学期末由年级部和教务处考核评分。
我从小就喜欢读书,现在,读书更成为了我生活中的一部分!一本好书,一杯清茶,无数个宁静的早晨,美丽的黄昏,温馨的夜晚,在书中和伟人交流思想,穿越时空的隧道,和名家大师一起分享读书的乐趣。是啊!一个人,无论在什么位置,无论多么贫冷,无论多么艰难,只要有一颗火热的心,只要能热爱生活,生活对你就是同等的。读书能给我们带来巨大的欢快,在读书中,我不断的发现自己,检查自己,丰富自己,提升自己。文章中心与书为伴,我一天天的变得充实;与书为伴,我一天天动的人生的真谛;与书为伴,我一天天长大为一名优秀的小学语文老师。
一、着力推进全县档案管理模式改革工作。 我县的档案管理模式改革工作按照省委、省政府文件要求,在县委、县政府的高度重视下,已于XX年上半年开始启动并联合下发了《关于开展全县档案管理模式改革工作的意见》和《颍上县档案管理模式改革工作实施方案》。XX年,新馆建成投入使用后,我局将加强该项工作的力度,组织业务人员有计划、有步骤,逐单位的进行分类指导,有循接收。在全县范围内建立起“归属明晰、运转协调、门类齐全、结构合理、管理科学、服务高效”的国家档案资源集中统一管理,“一站式”服务的新模式。实现档案管理资源集约化、人员素质现代化、业务建设标准化、管理工作规范化、服务社会优质化,进一步增强档案行政管理部门对国家资源监督管理职能和公共服务能力,开发和实现档案资源的最大效益。
1、全面负责农民工工资突发事件的应急处置工作。2、密切关注项目部是否有拖欠克扣劳动者工资情况,是否有上访事件动态,做到及时发现、及时上报,迅速到位,及时地处理,防止事态进一步扩大。四、处置应急事件程序1、信息报告:发生农民工工资突发事件后,在最短的时间内报告集团相关部门。2、启动预案:突发事件发生后,应急处理小组要在20分钟内做出案情初步判断,并启动应急预案。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。