(三)质疑再探:有了选举权和被选举权我们应该怎么行使呢?1、 假如你是该选区的选举负责人,你会对同学们说些什么?(你应该怎么正确认识和对待选举权和被选举权?)(选举权和被选举权是我国公民的一项神圣的政治权利。作为国家的公民、社会的主人,我们应该十分珍惜选举权和被选举权。)2、观察并分析课本的两幅插图,回答以下问题。以上材料说明了什么?答:说明我国公民广泛地享有选举权和被选举权;人大代表身份层次丰富,学历较高,能充分反映人民的意愿,代表人民管理国家。3、为什么说选举权和被选举权是我国公民参加国家管理的一项最基本的政治权利?(因为:1、选举权和被选举权在我国公民权利中居于首要地位。2、选举权和被选举权是实现人民当家做主的重要形式。
板书:国家机关及其工作人员行使职权造成损 失的,要依法承担赔偿责任。设计意图:引导学生懂得国家机关及其工作人员违法行使职权,侵犯公民合法权益,造成损害的,国家要依法承担赔偿责任。 环节环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸 课后,以权力违法必追责为主题写一篇日记。 设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计 为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书: 在黑板中上方的中间位置是课题《权力违法 必追责》,下面是:权力违法要依法纠正;中华人民共和国行政诉讼法;国家机关及其工作人员行使职权造成损失的,要依法承担赔偿责任。
设计意图:引导学生了解未成年人需要特殊保护的原因。 活动二:不同年龄段在法律上的意义学生阅读教材第73 页的知识窗,教师引导学生说一说不同年龄 阶段在法律上的不同意义, 知道自己享有相应的权利和应该承担相应 的义务或责任。板书:法律保护未成年人。设计意图:引导学生了解法律保护未成年人的重要性。 活动三:责任意识和能力要从小培养学生阅读教材第 73 页活动园中,家长和律师对未成年人做家务 的不同看法,学生结合自己的生活经验,先小组讨论,你如何看待未 成年人做家务这一问题?再全班汇报交流,教师相机引导,板书:未 成年人需要从小为家庭、学校、社会做一些力所能及的事情。设计意图是:引导学生懂得承担责任的能力和责任意识需要从小 培养。
9、过渡语 :宪法来之不易 ,我们更应该好好学 习宪法。为了 帮 助人们更好地学 习、理解宪法 ,每年的国家宪法日 都有活动主题 。请 你查一查 ,说说它们的含义 。10、活动 园:五年宪法日主题 。11、资料搜查员:请你查阅一下相关的资料 ,了解更多 与国家宪 法日相关的知识 ,并分享一下你 的所得。12、分享归纳 :宪法日小知识。13、小贴士 :一些 国家的宪法日。14 、大开眼界:世界各国宪法日是怎么过的?15、观察与思考 :从对国外宪法日及宪法日 活动的了解 当 中,你 感受到了 什么?16 、小感悟 :每个国家都 十分重视本国的宪法,通 过开展各式各 样的宪法日活动 ,帮助人们树 立宪法意识,从而形成崇尚宪法 的良好 社会氛围 ,维护宪法权威 。而我们也更应该在日常 生活 中学习宪法、 加强对宪法 的了解和认识。17、展示图片 :除 了宪法日意外,其他时间各中小 学也开展许多 活动 ,学 习宪法。
活动三:依法维权靠证据结合课前搜集到的有关依法维权时收集证据的资料,教师引导学生讨论教材第92 页活动园中的三个情景中,权利人可以收集的证据是什么?板书:依法维权要靠证据。设计意图是:引导学生懂得依法维权要靠证据。 环节三:课堂小结,内化提升 学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。 环节四:布置作业,课外延伸 生活中,在自己权利受到侵害时,用学到的方法依法维权。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。 六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书: 在黑板中上方的中间位置是课题《知法守法,依法维权》 ,下面是:未成年人依法维权的各种途径;在维护自身权利时,要学会保护自己;依法维权要靠证据。
一、教材分析《走近我们的老师》是统编教材小学《道德与法治》三年级上册第二单元第 5 课,共有两个话题,本节课学习的是第一个话题《我和老师的故事》,主要是引导学生理解老师对学生的良苦用心,学会和老师沟通,旨在激发师生之情,感恩老师、理解老师。二、学情分析三年级的小学生经过两年的学校生活后,对教师的工作有了一些 了解,但仅限于与教师接触的部分,对教师课余时间做些什么、怎么 备课、教育学生的方式等方面,学生还不太了解。因此,要通过有效 的教学,帮助引导学生进一步地理解教师的工作。三、教学目标与重难点 基于教材、学情的分析,以及对小学道德与法治课程的理解,我确定了本节课的教学目标与重难点。教学目标我确定了三个。
在上面两个活动的基础上,教师引导学生交流:你认为开展这类班级合作活动有什么意义?大家可以从中收获什么?板书:与班级共成长。设计意图:引导学生感受并认识班级间合作的意义。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸今后的学校生活中,积极地参与班级间的合作。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书:在黑板中上方的中间位置是课题《我们班,他们班》,下面是:班级的各种特点,积极参与班级间的合作,与班级共成长
一、教材分析《变废为宝有妙招》是统编教材小学《道德与法治》四年级上册第四单元第11课,共有两个话题,本节课学习的是第一个话题《暴增的垃圾》,主要是引导学生了解垃圾问题的现状,垃圾问题的产生及造成的后果,旨在引导学生了解垃圾的危害及后果,增强环保意识。二、学情分析在我们的日常生活中,随处可以见到各种各样的垃圾,带来了一些社会问题。一方面垃圾影响人们的生活,另一方面在废弃物中有可再利用的宝贵资源,由于人们不充分利用,造成环境的污染和巨大的资源浪费。因此,要通过有效的教学,帮助引导学生了解垃圾的危害,知道垃圾中哪些是可回收再利用的资源。三、教学目标与重难点基于教材、学情的分析,以及对小学道德与法治课程的理解,我确定了本节课的教学目标与重难点。教学目标我确定了三个。1.知道垃圾是从哪里来的,并积极地发现生活中的垃圾问题。
活动三:政府机关、监察机关和司法机关的职权 首先,学生阅读教材第46 页的图文资料,结合课前搜集到的有关人民政府的资料, 教师引导学生说一说行政机关有哪些?其职权是 什么?板书:行政管理职权,提供公共服务。然后,学生从教材第 47 页中找出监察机关和司法机关职权的相 关信息,并了解司法机关徽章的含义。板书:监察权,审判权,监督 权。最后,结合活动园中三名同学对法院可以审理哪些类型案件的争 议,先小组内讨论交流, 你认为法院可以审理哪些类型的案件?再全 班汇报交流,教师相机引导。设计意图:引导学生了解政府机关、 监察机关和司法机关的职权,知道人民法院可以审理哪些类型的案件。环节三:课堂小结,内化提升 学生谈一谈学习本节课的收获,教师相机引导。 设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸课后,以国家机关的职权为主题办一期手抄报。
2、内容内在逻辑本单元是九年级下册最后一个单元,从学生个体生活、家庭生活、学校生 活、社会生活和国家、世界,最终回到青少年自身,既是前两个单元的延续, 也是对九年级乃至初中阶段学习内容的承接和提升。第五课“少年的担当”主要引导学生与时代同步,走向更广阔的世界,在 与外部世界交往中丰富自己的经历、拓宽自己的视野,理解青少年具有国际 视野和情怀的重要意义,明白当代少年的历史责任是时代赋予的,理解青少 年全面提高个人修养的意义;第六课“我的毕业季”中设计了“学无止境”和“多彩的职业”,帮助学 生知道学习生活中出现的各种压力,理解学习的必要性和重要性,能够在实 践中学习,树立终身学习理念,知道不同劳动和职业具有独特价值,理解爱岗 敬业的重要性,,做好自己的职业规划和准备,能够践行社会主义核心价值观。第七课内容基本逻辑是立足当下、回望过去、展望未来。引导学生反思个 人成长的维度和方式,理解个人成长的关键,明白过程和结果的辩证关系,了 解初中生活之后的发展路径与内容,理解学习和实践的关系。激励他们树立 远大志向,做有自信,懂自尊,能自强的中国人成为中华民族的栋梁。
教学目标:1.能利用三角函数概念推导出特殊角的三角函数值.2.在探索特殊角的三角函数值的过程中体会数形结合思想.教学重点:特殊角30°、60°、45°的三角函数值.教学难点:灵活应用特殊角的三角函数值进行计算.☆ 预习导航 ☆一、链接:1.如图,用小写字母表示下列三角函数:sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三边长有什么特殊的数量关系?如果∠A=45°,那么三边长有什么特殊的数量关系?二、导读:仔细阅读课本内容后完成下面填空:
教学目标:1.知道二次函数与一元二次方程的联系,提高综合解决问题的能力.2.会求抛物线与坐标轴交点坐标,会结合函数图象求方程的根.教学重点:二次函数与一元二次方程的联系.预设难点:用二次函数与一元二次方程的关系综合解题.☆ 预习导航 ☆一、链接:1.画一次函数y=2x-3的图象并回答下列问题(1)求直线y=2x-3与x轴的交点坐标; (2)解方程2x-3=0(3)说出直线y=2x-3与x轴交点的横坐标和方程根的关系2.不解方程3x2-2x+4=0,此方程有 个根。二、导读画二次函数y= x2-5x+4的图象1.观察图象,抛物线与x轴的交点坐标是什么?2.求一元二次方程x2-5x+4=0的解。3.抛物线与x轴交点的横坐标与一元二次方程x2-5x+4=0的解有什么关系?(3)一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.二次函数y=ax2+bx+c的图象与x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?
教学目标(一)教学知识点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.(二)能力训练要求发展学生的数学应用意识和解决问题的能力.(三)情感与价值观要求1.在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气. 2.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.教具重点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索——发现法教具准备多媒体演示
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
(8)物价部门规定,此新型通讯产品售价不得高于每件80元。在此情况下,售价定为多少元时,该公司可获得最大利润?最大利润为多少万元?若该公司计划年初投入进货成本m不超过200万元,请你分析一下,售价定为多少元,公司获利最大?售价定为多少元,公司获利最少?三、小练兵:某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,销售量y(件)与销售单价x(元)之间的函数关系式为y= –20 x +1800.(1)写出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于76元,不高于78元,那么商场销售该品牌童装获得的最大利润是多少元?(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,那么商场销售该品牌童装获得的最大利润是多少元?
解:(1)设第一次落地时,抛物线的表达式为y=a(x-6)2+4,由已知:当x=0时,y=1,即1=36a+4,所以a=-112.所以函数表达式为y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,则-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守门员约13米;(3)如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件.常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.