4.They were going to find someone to take part in their bet when they saw Henry walking on the street outside.[归纳]1.过去将来时的基本构成和用法过去将来时由“would+动词原形”构成,主要表示从过去某一时间来看将要发生的动作(尤其用于宾语从句中),还可以表示过去的动作习惯或倾向。Jeff knew he would be tired the next day.He promised that he would not open the letter until 2 o'clock.She said that she wouldn't do that again.2.表示过去将来时的其他表达法(1)was/were going to+动词原形:该结构有两个主要用法,一是表示过去的打算,二是表示在过去看来有迹象表明将要发生某事。I thought it was going to rain.(2)was/were to+动词原形:主要表示过去按计划或安排要做的事情。She said she was to get married next month.(3)was/were about to+动词原形:表示在过去看来即将要发生的动作,由于本身已含有“即将”的意味,所以不再与表示具体的将来时间状语连用。I was about to go to bed when the phone rang.(4)was/were+现在分词:表示在过去看来即将发生的动作,通常可用于该结构中的动词是come,go,leave,arrive,begin,start,stop,close,open,die,join,borrow,buy等瞬间动词。Jack said he was leaving tomorrow.
环节四 情感升华,感悟生活播放《爱我中华》,感受祖国的伟大,民族的团结。设计意图:使学生感受伟大的中华民族的精神,内心产生共鸣,抒发强烈的爱国热情。教师带领学生一起合唱,用歌声结束本堂课内容,能再次唤起学生的爱国情感,使学生认识到:维护国家统一和民族团结是每个公民的义务。环节五 课堂小结 巩固知识本节课我采用线索性的板书,整个知识结构一目了然,为了充分发挥学生在课堂的主体地位,我将课堂小结交由学生完成,请学生根据课堂学习的内容,结合我的板书设计来进行小结,以此来帮助教师在第一时间掌握学生学习信息的反馈,同时培养学生归纳分析能力、概括能力。本节课,我根据建构主义理论,强调学生是学习的中心,学生是知识意义的主动建构者,是信息加工的主体,要强调学生在课堂中的参与性、以及探究性,不仅让他们懂得知识,更让他们相信知识,并且将知识融入到实践当中去,最终达到知、情、意、行的统一。
《基本不等式》在人教A版高中数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。2.经历基本不等式的推导与证明过程,提升逻辑推理能力。3.在猜想论证的过程中,体会数学的严谨性。数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.
学生在初中学习了 ~ ,但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入初中对角的定义是:射线OA绕端点O按逆时针方向旋转一周回到起始位置,在这个过程中可以得到 ~ 范围内的角.但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.
本节主要内容是三角函数的诱导公式中的公式二至公式六,其推导过程中涉及到对称变换,充分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会 的任意性;综合六组诱导公式总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。课程目标1.借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
一、说教材本节课选自于人教版语文必修二第二单元诗三首中的一首诗歌,它是陶渊明归隐后的作品。写的是田园之乐,实际表明的是作者不愿与世俗同流合污的心声,甘愿守着自己的拙志回归田园。学习该诗,有助于学生了解山水田园诗的特点,感受者作者不同流俗的高尚情操,同时可以培养学生初步的鉴赏古典诗歌的能力。
科学是人类认识世界的重要工具,阅读科普说明文不仅可以启迪心智,了解更多知识。而且更够激发学生对科学的兴趣。学习这些文章要注重学生科学精神的培养,关注科学探索的过程,感受科学家在科学探索中表现的人格魅力。我们知道一些科学家就是因为阅读了相关的科普文章才对某一学科产生兴趣,从而走上成功之路的。我们在讲解的时候可以跟学生列举一些例子,让学生认识到一篇好的科普文章的重大意义。
每年的6月5日是世界环境日,它的确反映了世界人民对环境问题的重视,表达了人类对美好环境的向往和追求。她是联合国促进全球环保意识,提高政府对环境问题的关注所采取的行动。地球是人类和其他物种的共同家园,然而由于人类常常采取乱砍滥发,竭泽而渔等不良发展方式,地球上物种灭绝的速度大大加快。生物多样性丧失正使生态系统滑向不可恢复的临界点,如果地球生态系统最终发生不可挽回的恶化,人类文明所赖以生存的相对稳定的环境条件将不复存在。
各位老师、同学们:大家上午好!我今天国旗下讲话的主题是《践行绿色生活》。今天是六月一日,是大家都很熟悉的儿童节,再过几天的六月五日也是一个很有意义的节日——世界环境日,今年是第45个世界环境日,中国的主题是“践行绿色生活”。今年6月5日也是新环保法实施后的首个“环境日”。“践行绿色生活”这个主题旨在增强全民环境意识、节约意识、生态意识,选择低碳、节俭的绿色生活方式和消费模式,形成人人、事事、时时崇尚生态文明的社会新风尚。自然环境是我们人类生存的基础,保护和改善自然环境,是人类维护自身生存和发展的前提。那么,同学们应该怎样保护环境呢?保护环境,推动生活方式绿色化,需要大家自觉从衣、食、住、行各方面做出绿色选择,应该从身边小事做起。而你们一直在实践着!建阳一中历年来始终坚持把学校教育与环境教育紧密结合起来,努力用“绿色”教育理念培育学生、引导学生,通过课内教学和课外社会实践活动相结合的办法,切实使学生掌握有关环境保护的生活知识,扩大学生的视野,培养了学生关爱社会、关爱地球、关爱他人的美好情操,受到社会各界的肯定和广泛赞誉。
四是每年坚持委托第三方检测机构对管网水43项及出厂水97项水质指标进行检测分析,从严把好水质安全关,确保市民喝上干净水、安全水、放心水。五是对办理用水报装业务的单位及个人主要申请材料齐全且符合,但次要条件或申请材料欠缺的供水报装服务事项,经过申请人作出相应承诺后,公司将先予受理和办理,建立容缺受理机制。六是对在建项目开通“先通水后办理”绿色通道,建立临时用水机制。二、存在问题及下一步打算目前,公司采用的物联网管理营收平台,已能实现大部分用水户网上缴费,提高了自动化管理水平和工作效率,但智能水表普及率仍然偏低。下一步,我公司将持续深化“优化营商环境攻坚突破年”活动,用实际行动架起供水企业和用水客户的“连心桥”,不断提高用水供给和服务质量。一是加快接市政工程建设项目审批系统,实现“水、气、电、暖”“一窗通办”,进一步提高办事效率。二是加快建设公司公众号建设,满足不同用户需求,使用户通过公众号实现供水报装、水费查询和缴纳等相关业务。三是进一步推进智慧水务建设,计划2023年至2025年逐步更换改造物联网水表4000台,力争2030年全面普及智能水表。
三是用好科技企业培育平台。启动2024年度科技型中小企业评价工作,帮助企业享受研发费用xxx%加计扣除政策,截至目前,全区参评企业xxx家,其中高新技术企业xxx家,已有xx家入库,另有xx家正在公示。(四)找准“需求点”,精准服务企业有温度。一是创新施策,优化创新生态体系。为进一步精准服务企业,区科委由“管理思维”转变为“服务视角”,草拟了《xx区创新生态服务体系“一点即办”工作方案》,采取线上线下相结合的方式,走访征集企业需求,根据不同需求分类,组织相关部门召开专题会,积极协调响应企业需求。已收集需求xxx项,涉及空间需求、政策解读、资金支持、人才落户、子女入学、人才居住、疫情防控等x方面,已解决xxx项、正在推进xx项。针对玛诺生物制药股份有限公司生产资金短缺问题,积极对接区内银行提供金融服务。
一是进一步强化工作举措。紧盯创建一流招投标市场营商环境工作目标,深入开展招投标领域对标提升行动,扎实开展包联企业走访,进一步创新方法,强化措施,着力解决全县招投标领域的“难点”“痛点”“堵点”问题,加快推进地方建筑业企业高质量发展。二是进一步加强工作宣传。大力开展《优化营商环境条例》《安徽省实施〈优化营商环境条例〉办法》等政策法规的宣贯活动,帮助企业树牢规矩意识、大局意识、自律意识,着力增强政企互信,做到相互理解、相互支持,引导企业依法维护合法权益。三是进一步完善长效机制。认真贯彻执行优化营商环境的政策措施,持续修订、完善招投标监管制度、操作规程及交易规则,进一步厘清职责、理顺关系,一体推进标前、标中、标后监管,着力构建创建一流招投标市场营商环境的长效常态机制。
针对招标(采购)文件容易出现的问题,明确正负面清单,推出前置告知和现场告知措施,进场时限从原来的2—3天缩减到1小时以内,做到“即提即办”。压缩保证金退付时限。由原来的5日缩减为1日,及时解除投标保证金占用企业现金流的情况。全面完善“绿色通道”机制,实行“容缺受理”,缩减审核等相关环节需要的时间,尽量做到能上则上、能早则早、能快则快,使项目尽快进入交易程序。提供贴心服务。健全“店小二”服务模式,配备“帮办代办”专员,对需现场办理的业务,“帮办代办”专员提前主动与招标(采购)主体联系对接,一次性告知所需材料,提交后一次性办结;对交易主体不能到场的,委托“帮办代办”专员全程办理有关交易事项,实现了项目交易“最多只跑一次腿”,甚至“一次都不跑”的工作目标。
一、强改革,阳光交易再升级。强化数字赋能,通过升级“不见面开标+远程异地评标+分散卡位式评标+电子监管”技术再融合,以打通全流程电子化“最后一公里”为目标,开启“不见面开标+远程异地评标”新常态。创新建立市域内公共资源交易一体化协调调度机制,完成市域内远程异地评标场地“一体调度”、交易项目“一屏统览”、设备设施“一键启动”、专家资源“一键调配”、交易数据“一键归集”任务指标。拓展远程异地评标适用地域,与4个省份5个市州签署远程异地合作协议,实现“线上开、异地评”,打破开评标地域界限,开启不同区域、不同专业领域优质专家资源共享。实现专家独立评审新突破。强力推进评标模式改革,率先在省内迈出了分散卡位式评标新的第一步,通过物理隔离、线上服务、信用承诺、在线监督等方式,最大程度减少评审过程中人为因素的干预,以技术手段实现专家盲评,减少并制约专家“自由裁量权”,让数据说话、让阳光直射、让科技记录,营造公开、公平、公正的交易秩序,有效激发市场主体活力。打造电子监管新模式。
本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.
新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。
问题导入:问题一:试验1:分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝上”,B=“第二枚硬币正面朝上”。事件A的发生是否影响事件B的概率?因为两枚硬币分别抛掷,第一枚硬币的抛掷结果与第二枚硬币的抛掷结果互相不受影响,所以事件A发生与否不影响事件B发生的概率。问题二:计算试验1中的P(A),P(B),P(AB),你有什么发现?在该试验中,用1表示硬币“正面朝上”,用0表示“反面朝上”,则样本空间Ω={(1,1),(1,0),(0,1),(0,0)},包含4个等可能的样本点。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率计算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)积事件AB的概率恰好等于事件A、B概率的乘积。问题三:试验2:一个袋子中装有标号分别是1,2,3,4的4个球,除标号外没有其他差异。
(2)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下。故用中位数来估计每天的用水量更合适。1、样本的数字特征:众数、中位数和平均数;2、用样本频率分布直方图估计样本的众数、中位数、平均数。(1)众数规定为频率分布直方图中最高矩形下端的中点;(2)中位数两边的直方图的面积相等;(3)频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数。学生回顾本节课知识点,教师补充。 让学生掌握本节课知识点,并能够灵活运用。
客观世界中的各种各样的运动变化现象均可表现为变量间的对应关系,这种关系常常可用函数模型来描述,并且通过研究函数模型就可以把我相应的运动变化规律.课程目标1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题; 2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性. 数学学科素养1.数学抽象:总结函数模型; 2.逻辑推理:找出简单实际问题中的函数关系式,根据题干信息写出分段函数; 3.数学运算:结合函数图象或其单调性来求最值. ; 4.数据分析:二次函数通过对称轴和定义域区间求最优问题; 5.数学建模:在具体问题情境中,运用数形结合思想,将自然语言用数学表达式表示出来。 重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题;难点:运用函数思想理解和处理现实生活和社会中的简单问题.
问题二:上述问题中,甲、乙的平均数、中位数、众数相同,但二者的射击成绩存在差异,那么,如何度量这种差异呢?我们可以利用极差进行度量。根据上述数据计算得:甲的极差=10-4=6 乙的极差=9-5=4极差在一定程度上刻画了数据的离散程度。由极差发现甲的成绩波动范围比乙的大。但由于极差只使用了数据中最大、最小两个值的信息,所含的信息量很少。也就是说,极差度量出的差异误差较大。问题三:你还能想出其他刻画数据离散程度的办法吗?我们知道,如果射击的成绩很稳定,那么大多数的射击成绩离平均成绩不会太远;相反,如果射击的成绩波动幅度很大,那么大多数的射击成绩离平均成绩会比较远。因此,我们可以通过这两组射击成绩与它们的平均成绩的“平均距离”来度量成绩的波动幅度。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。