学科数学 课 题 1.4 充要条件班级 人数 授课时数 2 课 型 新授课 周次 授课时间 教 学 目 的 知识目标:了解“充分条件”、“必要条件”及“充要条件” 能力目标:培养学生的分析问题能力解决问题的能力. 情感目标:通过师生互动,学生之间的讨论分析,加强合作意识。 教学重点“充分条件”、“必要条件”及“充要条件”.教学难点符号“”,“”,“”的正确使用. 教 具 教 后 小 结 学生是否真正理解有关知识; 是否能利用知识、技能解决问题; 在知识、技能的掌握上存在哪些问题。
教师姓名 课程名称数学班 级 授课日期 授课顺序 章节名称§2.3 一元二次不等式教 学 目 标知识目标:1、理解一元二次不等式和一元二次方程以及二次函数之间的关系 2、理解一元二次不等式的解集的含义 3、一元二次不等式的解集与二次函数图像的对应 技能目标:1、会解一元二次方程 2、会画二次函数的图像 3、能结合图像写出一元二次不等式的解集 情感目标:体会知识之间的相互关联性,体会数形结合思想的重要性教学 重点 和 难点重点: 1、一元二次不等式的解集的含义 2、一元二次不等式与二次函数的关系 难点: 1、将一元二次不等式和一元二次方程以及二次函数联系起来 2、在函数图像上正确的找到解集对应的部分教 学 资 源《数学》(第一册) 多媒体课件评 估 反 馈课堂提问 课堂练习作 业习题2.3课后记本节课内容是比较重要的,是一元二次方程、一元二次函数、一元二次不等式的结合,相关知识点融会贯通,数形结合的思想方法在这有很好的运用。三种情况只要讲清楚一种,另外两种可由学生自行推出结论。
【教学目标】1、了解方程、不等式、函数的图像之间的联系;2、掌握一元二次不等式的图像解法;【教学重点】1、 方程、不等式、函数的图像之间的联系;2、 一元二次不等式的解法。【教学难点】 一元二次不等式的解法。【教学设计】 1、从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;2、类比观察一元二次函数图像,得到一元二次不等式的图像解法;3、加强知识的巩固与练习,培养学生的数学思维能力。【课时安排】 2课时(90分钟)【教学过程】一、一元二次不等式的解法² 复习回顾1、根据初中所学知识,填写下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的图像ax²+bx+c=0 (a>0)的根有 2 个根有 1 个根有 0 个根2、观察二次函数y=x²-5x+6的图像,回答下列问题:(1)当y=0时,x取什么值?(2)二次函数y=x²-5x+6的图像与x轴交点的坐标是什么?(3)当y<0时,x的取值范围是什么?总结:由此看到,通过对函数y=x²-5x+6的图像的研究,可以求出不等式x²-5x+6>0与x²-5x+6<0的解集
教学内容4.4.1 对数函数及其图像与性质教学时间 (不超过3课时)2课时授课类型新授课班级 日期 教学目标知识目标:掌握对数函数的概念,图象和性质,并会简单的应用.能力目标:观察对数函数的图像,总结对数函数的性质,培养观察能力.情感目标:)体味对数函数的认知过程,树立严谨的思维习惯.教学重点对数函数的图像及性质.教学难点对数函数图象和性质的发现过程,培养数形结合的思想.教法学法这节课主要采用启发式和引导发现式的教学方法。⑴ 实例引入知识,提升学生的求知欲;⑵ “描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质; ⑶知识的巩固与练习,培养学生的思维能力;通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受.课前准备1.备教材、备学生 2.PPT课件 3.五环四步教学模式教案教 学 过 程环节教师活动师生活动预期效果一环 学情 动员某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,……,那么,知道分裂得到的细胞个数如何求得分裂次数呢? 设1个细胞经过y次分裂后得到x个细胞,则x与y的函数关系是,写成对数式为,此时自变量x位于真数位置.师:根据式,给定一个x值(经过的次数),就能计算出唯一的函数值y.实际上,在这个问题中知道的是y的值,要求的是对应的x值.所以用对数形式表示, 通常我们用x表示自变量,用y表示因变量, 易于学生想象领会函数意义二环问题 诊断一般地,形如的函数叫以为底的对数函数,其中a>0且a≠1.对数函数的定义域为,值域为R. 例如、、都是对数函数. 教师引导学生联系上面“情景问题”的表达式,请同学们思考讨论对数函数的概念. 师:(1) 为什么规定 a>0且 a≠1? (2) 为什么对数函数的定义域是(0,+∞)? 指导体会对数函数的特点。让学生牢记底数大于零且不等于1,真数大于零.
【教学目标】知识目标:⑴ 理解指数函数的图像及性质;⑵ 了解指数模型,了解指数函数的应用.能力目标:⑴ 会画出指数函数的简图;⑵ 会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.【教学重点】⑴ 指数函数的概念、图像和性质;⑵ 指数函数的应用实例.【教学难点】指数函数的应用实例.【教学设计】⑴ 以实例引入知识,提升学生的求知欲;⑵ “描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质;⑶知识的巩固与练习,培养学生的思维能力;⑷实际问题的解决,培养学生分析与解决问题的能力;⑸以小组的形式进行讨论、探究、交流,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】 教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 4.2指数函数. *创设情景 兴趣导入 问题 某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……,知道分裂的次数,如何求得细胞的个数呢? 解决 设细胞分裂次得到的细胞个数为,则列表如下: 分裂次数x123…x…细胞个数y2=4=8=…… 由此得到, . 归纳 函数中,指数x为自变量,底2为常数. 介绍 播放 课件 质疑 引导 分析 了解 观看 课件 思考 领悟 导入 实例 比较 易于 学生 想象 归纳 领会 函数 的变 化意 义 5
课 程数学章节内容 课程类型新课课时安排2课时指导教师 日期12月 7 日学习目标掌握用弧度表示角度的大小学习重点掌握用弧度表示角的方法学习难点弧度制和角度制的互换回顾(温故知新)1、回顾上节课所学内容:任意角度的推广、终边相等的角的表示方法; 2、已经学过角度的计量单位:度,度分秒是如何换算的; 3、圆的周长公式和扇形弧长公式。问题(顺着问题找思路)1、弧度制:等于半径长的圆弧所对的圆心角叫做__________,记作____弧度或1________。 2、正角的弧度为_____数,负角的弧度为_____数,零角的弧度为零。 3、由弧度的定义可知,当角α用弧度来表示,其绝对值|α|和圆弧长l与圆的半径r有:|α|=________。 4、一个圆的周长为_____,所以一周角(360°)的弧度为_______=______(rad) 。 5、360°=_____(rad); 180°=_______(rad); 思考如何将角度制转化为弧度制?如何将弧度制转化为角度制?(结合实例讲解)练习(通过练习固要点)1、练习5.2.1; 2、例3;展示(通过展示强能力)(25分钟)(包括学生展示回顾、问题、练习、小组总结等部分)1、引导各小组展示学习成果,在有各小组长指定小组成员展示,结束后,该组组长须总结或指定其他成员进行总结。 2、展示过程中,提醒同学注意老师的板书,或者请老师进行总结,或题目的讲解。
教学目标:知识与能力目标:1.能够借助三角函数的定义及单位圆推导出三角函数的诱导公式 2.能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角的三角函数的化简、求值问题情感目标:1.通过诱导公式的探求,培养学生的探索能力、钻研精神和科学态度 2.通过诱导公式探求工程中的合作学习,培养学生团结协作的精神; 3. 通过诱导公式的运用,培养学生的划归能力,提高学生分析问题和解决问题的能力。 一导入:二、自学(阅读教材第110---112页,回答下列问题) 在直角坐标系下,角的终边与圆心在原点的单位圆相交于,则,(一)终边相同的角:终边相同的角的 公式一:_______ ________________(二)关于轴的对称点的特征: 。对于角而言:角关于轴对称的角为_______公式二:__________ _________ _________
【教学目标】知识目标:(1)掌握利用计算器求角度的方法;(2)了解已知三角函数值,求指定范围内的角的方法.能力目标:(1)会利用计算器求角;(2)已知三角函数值会求指定范围内的角;(3)培养使用计算工具的技能.【教学重点】已知三角函数值,利用计算器求角;利用诱导公式求出指定范围内的角.【教学难点】已知三角函数值,利用计算器求指定范围内的角.【教学设计】(1)精讲已知正弦值求角作为学习突破口;(2)将余弦、正切的情况作类比让学生小组讨论,独立认知学习;(3)在练习——讨论中深化、巩固知识,培养能力;(4)在反思交流中,总结知识,品味学习方法.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】 教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 5.7已知三角函数值求角 *构建问题探寻解决 问题 已知一个角,利用计算器可以求出它的三角函数值, 利用计算器,求= (精确到0.0001): 反过来,已知一个角的三角函数值,如何求出相应的角? 解决 准备计算器.观察计算器上的按键并阅读相关的使用说明书.小组内总结学习已知三角函数值,利用计算器求出相应的角的方法. 利用计算器求出x:,则x= 归纳 计算器的标准设定中,已知正弦函数值,只能显示出?90°~ 90°(或)之间的角. 介绍 质疑 提问 引导 说明 了解 思考 动手 操作 探究 利用 问题 引起 学生 的好 奇心 并激 发其 独立 寻求 计算 器操 作的 欲望 10
授课 日期 班级16高造价 课题: §6.3等比数列 教学目的要求: 1.理解等比数列的概念,能根据定义判断或证明一个数列是等比数列;2.探索并掌握等比数列的通项公式; 3.掌握等比数列前 n 项和公式及推导过程,能用公式求相关参数; 教学重点、难点:运用等比数列的通项公式求相关参数 授课方法: 任务驱动法 小组合作学习法 教学参考及教具(含多媒体教学设备): 《单招教学大纲》 授课执行情况及分析: 板书设计或授课提纲 §6.3等比数列 1.等比数列的概念 (学生板书区) 2. 等比数列的通项公式 3.等比数列的求和公式
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点*巩固知识 典型例题 例6 一艘船以每小时36海里的速度向正北方向航行(如图1-9).在A处观察到灯塔C在船的北偏东方向,小时后船行驶到B处,此时灯塔C在船的北偏东方向,求B处和灯塔C的距离(精确到0.1海里). 图1-9 A 解因为∠NBC=,A=,所以.由题意知 (海里). 由正弦定理得 (海里). 答:B处离灯塔约为海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和(图1-10),在平地上选择适合测量的点C,如果,m,m,试计算隧道AB的长度(精确到m). 图1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的长度约为409m. 例8 三个力作用于一点O(如图1-11)并且处于平衡状态,已知的大小分别为100N,120N,的夹角是60°,求F的大小(精确到1N)和方向. 图1-11 解 由向量加法的平行四边形法则知,向量表示F1,F2的合力F合,由力的平衡原理知,F应在的反向延长线上,且大小与F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F与F1间的夹角是180°–33°=147°. 答:F约为191N,F与F合的方向相反,且与F1的夹角约为147°. 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 我们知道,在直角三角形(如图)中,,,即 ,, 由于,所以,于是 . 图1-6 所以 . 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 10*动脑思考 探索新知 在任意三角形中,是否也存在类似的数量关系呢? c 图1-7 当三角形为钝角三角形时,不妨设角为钝角,如图所示,以为原点,以射线的方向为轴正方向,建立直角坐标系,则 两边取与单位向量的数量积,得 由于设与角A,B,C相对应的边长分别为a,b,c,故 即 所以 同理可得 即 当三角形为锐角三角形时,同样可以得到这个结论.于是得到正弦定理: 在三角形中,各边与它所对的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列问题: (1)已知三角形的两个角和任意一边,求其他两边和一角. (2)已知三角形的两边和其中一边所对角,求其他两角和一边. 详细分析讲解 总结 归纳 详细分析讲解 思考 理解 记忆 理解 记忆 带领 学生 总结 20
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
方法总结:描述一个代数式的意义,可以从字母本身出发来描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中字母一定的实际意义加以描述.探究点四:根据实际问题列代数式用代数式表示下列各式:(1)王明同学买2本练习册花了n元,那么买m本练习册要花多少元?(2)正方体的棱长为a,那么它的表面积是多少?体积呢?解析:(1)根据买2本练习册花了n元,得出买1本练习册花n2元,再根据买了m本练习册,即可列出算式.(2)根据正方体的棱长为a和表面积公式、体积公式列出式子.解:(1)∵买2本练习册花了n元,∴买1本练习册花n2元,∴买m本练习册要花12mn元;(2)∵正方体的棱长为a,∴它的表面积是6a2;它的体积是a3.方法总结:此题考查了列代数式,用到的知识点包括正方体的表面积公式和体积公式,根据题意列出式子是解本题的关键.
一天,王村的小明奶奶提着一篮子土豆去换苹果,双方商定的结果是:1千克土豆换0.5千克苹果.当称完带篮子的土豆重量后,摊主对小明奶奶说:“别称篮子的重量了,称苹果时也带篮子称,这样既省事又互不吃亏.”你认为摊主的话有道理吗?请你用所学的有关数学知识加以判定.解析:要看摊主说得有没有道理,只要按称篮子和不称篮子两种方式分别求出所得苹果的重量,比较即可.解:设土豆重a千克,篮子重b千克,则应换苹果0.5a千克.若不称篮子,则实换苹果为0.5a+0.5b-b=(0.5a-0.5b)千克,很明显小明奶奶少得苹果0.5b千克.所以摊主说得没有道理,这样做小明奶奶吃亏了.方法总结:体现了数学在生活中的运用.解决问题的关键是读懂题意,找到所求的量之间的关系.三、板书设计数学教学要紧密联系学生的生活实际,本节课从实际问题入手,引出合并同类项的概念.通过独立思考、讨论交流等方式归纳出合并同类项的法则,通过例题教学、练习等方式巩固相关知识.教学中应激发学生主动参与学习的积极性,培养学生思维的灵活性.
1.理解角的概念,掌握角的表示方法.2.理解平角、周角的概念,掌握角的常用度量单位:度、分、秒,及它们之间的换算关系,并会进行简单的换算.一、情境导入钟表是我们生活中常见的物品,同学们,你能说出图中每个钟表时针与分针所成的角度吗?学完了下面的内容,就会知道答案.二、合作探究探究点一:角的概念及其表示方法【类型一】 对角的概念的考查下列关于角的说法中正确的有()①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边的延长线上取一点;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A.1个 B.2个 C.3个 D.4个解析:①角是由有公共端点的两条射线组成的图形,错误;②角的大小与开口大小有关,角的边是射线,没有长短之分,错误;③角的边是射线,不能延长,错误;④角可以看作由一条射线绕着它的端点旋转而形成的图形,说法正确.所以只有④正确.故选A.
一、情境导入游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片《孩子,请不要私自下水》,并于观看后在本校的2000名学生中作了抽样调查.你能根据下面两个不完整的统计图回答以下问题吗?(1)这次抽样调查中,共调查了多少名学生?(2)补全两个统计图;(3)根据抽样调查的结果,估算该校2000名学生中大约有多少人“一定会下河游泳”?二、合作探究探究点一:频数直方图的制作小红家开了一个报亭,为了使每天进的某种报纸适量,小红对这种报纸40天的销售情况作了调查,这40天卖出这种报纸的份数如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131将上述数据分组,并绘制相应的频数直方图.解析:先找出这组数据的最大值和最小值,再以10为组距把数据分组,然后制作频数直方图.解:通过观察这组数据的最大值为188,最小值为131,它们的差是57,所以取组距为10,分6组,整理可得下面的频数分布表:
方法总结:由绝对值的定义可知,一个数的绝对值越小,离原点越近.将实际问题转化为数学问题,即为与标准质量的差的绝对值越小,越接近标准质量.【类型四】 绝对值的非负性已知|x-3|+|y-2|=0,求x+y的值.解析:一个数的绝对值总是大于或等于0,即为非负数,若两个非负数的和为0,则这两个数同为0.解:由题意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法总结:几个非负数的和为0,则这几个数都为0.三、板书设计绝对值相反数绝对值性质→|a|=a(a>0)0(a=0)-a(a<0)互为相反数的两个数的绝对值相等两个负数比较大小:绝对值大的反而小绝对值这个名词既陌生,又是一个不易理解的数学术语,是本章的重点内容,同时也是一个难点内容.教材从几何的角度给出绝对值的概念,也就是从数轴上表示数的点的位置出发,得出定义的.
方法总结:本题考查了利用数轴,比较数的大小关系,对于含有绝对值的式子的化简,要根据绝对值内的式子的正负,去掉绝对值符号.探究点四:含括号的整式的化简应用某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压,调整为按售价的80%出售,又销售了60件.(1)销售100件这种商品的总售价为多少元?(2)销售100件这种商品共盈利多少元?解析:(1)求出前40件的售价与后60件的售价即可确定出总售价;(2)由“利润=售价-成本”列出关系式即可得到结果.解:(1)根据题意得:40(a+b)+60(a+b)×80%=88a+88b(元),则销售100件这种商品的总售价为(88a+88b)元;(2)根据题意得:88a+88b-100a=-12a+88b(元),则销售100件这种商品共盈利(-12a+88b)元.方法总结:解决此类题目的关键是熟记去括号法则和熟练运用合并同类项的法则.
根据题意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公顷),18%x=18%×1000=180(公顷),34%x=34%×1000=340(公顷).答:玉米种了340公顷,高粱种了180公顷,水稻种了480公顷.方法总结:从扇形统计图中获取正确的信息是解题的关键.语文老师对班上学生的课外阅读情况做了调查,并请数学老师制作了如图所示的统计图.(1)哪种书籍最受欢迎?(2)哪两种书籍受欢迎程度差不多?(3)图中扇形分别表示什么?(4)图中的各个百分比如何得到?所有的百分比之和是多少?解:(1)科幻书籍最受欢迎,可从扇形的大小或图中百分比的大小得出.(2)科普书籍和武侠书籍受欢迎程度差不多,可从图中扇形大小或图中所标百分比的大小得出.(3)图中扇形分别代表了最喜欢某种书籍的人数占全班人数的百分比.(4)用最喜欢某种书籍的人数比全班的总人数即可得各个百分比,所有的百分比之和为1.方法总结:由扇形统计图获取信息时,一定要明确各个项目和它们所占圆面的百分比.
将有理数-2,+1,0,-212,314在数轴上表示出来,并用“<”号连接各数.解析:利用数轴上的点来表示相应的数,再利用它们对应点的位置来判断各数的大小.解:如图:由数轴可知-212<-2<0<+1<314.方法总结:一般地,数轴上多个数的大小比较,可利用“数轴上两个点表示的数,右边的总比左边的大”这一性质进行比较.探究点四:点在数轴上的移动问题点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到点B时,点B所表示的有理数为()A.2 B.-6C.2或-6 D.以上答案都不对解析:∵点A为数轴上表示-2的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为2.故选C.方法总结:点A在数轴上移动要注意分两种情况:一个向左,一个向右,不要漏掉其中的一种情况.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。