解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因为NE=AC=a,所以MN=ME+EN=l·tanα+a.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
二、说活动目标 活动目标是教学活动的起点和归宿,对活动起着引导性的作用。根据《新纲要》在科学领域中提出:在幼儿生活经验的基础上,帮助幼儿了解自然、环境与人类生活的关系。从身边的小事入手,培养初步的环保意识和行为。根据这一目标和要求,结合中班幼儿年龄特点制定了认知、技能、情感三方面的教学目标。1、目标一:欣赏图片阅读教材,理解图片内容知道花草树木对人类的作用。2、目标二:欣赏图片并根据生活经验,说出几种花草树木的名称和作用及其保护方法。3、目标三:了解花草树木与人类的依存关系,萌发幼儿保护花草树木及环境的意识,产生爱树爱花的情感。 (目标定位:通过欣赏图片阅读教材来了解花草树木对人类的作用,了解花草树木是怎样为人类服务的,萌发幼儿爱护花草树木的情感)三、说教法与学法 《新纲要》中强调幼儿是中心,教育活动应该以幼儿的需要,兴趣,尤其是幼儿的经验来进行,学决定教。在活动中我和幼儿的角色都是教学活动的主人翁,主要是以幼儿为主。让幼儿在教学活动中享受探究问题及解决问题的快乐。所以在教学活动中我采用了“图片观察法”运用直观、形象的图片进行欣赏,引导幼儿理解图片内容及其意思。“游戏法”通过游戏让幼儿亲身体验怎样爱护花草树木让幼儿更深一层的了解爱护花草树木需要做的事情,在游戏中让幼儿学会爱护花草树木的深刻内涵。四、说活动准备 活动中准备:挂图四幅、幼儿用书第37-38页、五幅环保画(例如:树木被破坏、花朵被摘……)、制作花朵大树头饰幼儿人数各一半
1、书中还有许多描写旺达的片段,哪一处给你留下了深刻的印象呢?请同座位互相交流。全班交流。老师也想和大家一起分享一点感受。老师读第13页片段,并谈感受。课件出示:孤单,被嘲笑者2、你有过被人嘲笑的经历吗?谈一谈。旺达是怎样面对同学们的嘲笑?3、转学之后,十三班的同学们收到了她爸爸的来信。谁愿意读读这封信?圣诞节来临之际,旺达也写来一封信。学生读。读完这两封信,大家肯定感慨万千,一定有很多话想说吧?全班交流课件出示:善良 宽容
三、解题和介绍创作背景。"装在套子里的人"是指生活和思想上都有某种框框,不敢越雷池一步的人,小说中的主人公就是这样一个人物,他是沙皇专制主义的产物。现在,别里科夫已成为顽固守旧,害怕变革,阻碍社会发展的人的代名词。我们学习这篇课文,必须把握创作的时代背景:19世纪末期的俄国正是农奴制度崩溃、资本主义迅速发展、沙皇专制极端反动和无产阶级革命逐渐兴起的时期。沙皇政府面临着日益高涨的革命形势,极力加强反动统治,沙皇政府的忠实卫道士,也极力维护沙皇的反动统治,仇视和反对一切社会变革。作者写这篇小说就是为了揭露和讽刺这种人丑恶的本质。四、结构分析明确:故事的主要情节是别里科夫的恋爱以及最后失败,按照情节的发展可以把课文分成三部分:(一)介绍别里科夫的外表、生活习性和思想性格(第1-4段)。(二)别里科夫与华连卡恋爱以及最后失败(第5段至倒数第3段)。(三)埋葬别里科夫,但生活中还有许多"别里科夫"(最后两段)。
【设计意图】引导学生梳理文章内容,学习文章层层推理的特色。四、当堂检测《生于忧患,死于安乐》中提出担当大任的人必须经过艰苦的磨炼。请根据查找的相关资料,补充一些例子,并说说你的看法。1.司马迁受宫刑而作《史记》。2.曹雪芹举家食粥而写出了不朽的《红楼梦》。3.贝多芬即使在双耳失聪的情况下,仍然坚持音乐创作。(生交流讨论,举手发言)师小结:美国剧作家帕特里克说:“痛苦使人思索,思索使人明智,智慧使人生命持久。”优越的条件容易消磨人的意志,腐蚀人的健康肌体,使人丧失成功的上进心;而艰苦的环境,坎坷的道路,却能磨炼人的意志,增强人的上进心。学习了本文,希望大家悉心体会,思有所悟,学有所获。【设计意图】增强学生的忧患意识,激励学生要有克服困难的信心和勇气,学会正确对待生活中的困境。
庄子是战国时期著名的思想家、哲学家和文学家。他是道家学派主要代表人物之一,他继承并发展了老子的思想,与老子并称“老庄”。《庄子》又名《南华经》,是道家经典著作之一。《庄子》主要反映了庄子的批判哲学、美学等,其内容丰富,博大精深,涉及哲学、人生、政治、社会、艺术、宇宙生成论等诸多方面。《庄子》是一部文学的典范著作。“道”是庄子思想的核心,“逍遥游”是庄子不满黑暗现实的羁绊而提出的一种生活方式与社会理想。庄子主张超然物外,绝对自由地生活在世界上,他认为生命的意义不在于庸俗地活着,而在于逍遥地神游,这些精神的遨游是绝对自由的,在庄子看来,自然是一种超凡脱俗的状态,一种妙不可言的境界。庄子的“逍遥游”是一种感性的生活方式,他告诉我们要去追求功利之外独立的生命价值,追求人生的真实自我。从当下来看,庄子追求的逍遥境界,是无法实现的主观唯心主义幻想,是一种乌托邦式的美好的臆想。
1.胡萝卜先生的胡子可真长啊!胡萝卜先生继续走着,接下来会发生什么有趣的事情呢?(学生发挥想象,预测接下来的故事情节。) 2.自读课文第4-8自然段,看看与你们自己的预测一样不一样吧!学生自己读故事,发现自己的预测和文本内容不一样时及时修正自己的想法。(1)出示关键句:线实在太短了,他的风筝只能飞过屋顶。根据课文内容,预测接下来的故事发展。(2)出示关键句:鸟太太正在找绳子晾小鸟的尿布。根据插图中鸟太太遇见胡萝卜先生惊喜的神态,预测接下来的故事发展。 3.文章写完了吗?为什么?(结尾的省略号就告诉我们这个故事还没有结束。) 既然没有结束,我们就来续编故事吧!可以结合上面的男孩的语言、动作续编故事,也可以有自己新奇的想法。大家之前预测的故事发展只要合乎情理也可以继续预测。
重点难点1.欣赏和感知理解漫画作品.需要幼儿集中注意观察,这也是能否达到目标的重要条件。因此,我从活动开始便设置了一个个悬念,直到结尾也就是高潮部分,我没有直接揭晓答案,而是留给幼儿一个充分的想像空间。这样,使幼儿的注意得以长久保持。2.了解漫画特点对幼儿是有一定难度的,当然也不是一次活动所能完成的。因此,在活动中,我们不能空洞地将一些抽象的词汇灌输给孩子们听,而是通过精心设计的提问和让幼儿欣赏一些有代表性的漫画作品,有机渗透在活动中。我还设置了漫画墙作为准备和延伸活动,长期贴在教室里,使幼儿自己从中慢慢体会,不断深入地了解漫画。 活动目标1.理解漫画作品内容,尝试运用语言和图画刨编故事结尾。2.通过漫画欣赏、初步了解漫画的基本特点,更加喜欢漫画这一艺术形式。3.养成细致观察和大胆想像的习惯。 活动准备1.漫画书《父与子》一本,完整的4幅漫画作品、不加背景的图4一幅。2.供幼儿续编添画的作业纸每人一张、黑色水笔每人一根。3.布置一个漫画墙,上面贴有许多有代表性的漫画作品(单幅的、连环的、黑白的、彩色的、有趣可笑的、充满幻想的、讽刺褒贬的)。
(1)重点词语解释静以修身(修养身心)非宁静无致远(实现远大目标)无以广才(扩展);淫慢则不能励精(过度怠慢)年与时驰(消失、逝去)遂成枯落(形容人韶华逝去)(2)重点句子翻译①非澹泊无以明志,非宁静无以致远……非学无以广才,非志无以成学;翻译:不恬静寡欲无法明确志向,不排除外来干扰无法达到远大目标。②年与时驰,意与日去,遂成枯萎,多不接世。翻译:年华随时光消失,意志随岁月流逝,最终枯败零落,对社会没有任何贡献。3.生译全文。品德高尚、德才兼备的人,(应该)用静来修善自身,用俭朴来淳养品德。不看轻世俗的名利就不能表明自己的志向,不静心思考就不能实现远大的目标。学习必须静心,才识需要学习,不学习无从拓广才识,不立志不能学习成功。沉迷懈怠就不能励精求进,偏狭暴躁激进就不能冶炼性情。年龄随着光阴飞逝,志向随着年龄消退,最后精力衰竭学识无成,大多以不能承接先世的志向不为社会所用,可悲地守着贫寒的居舍。那时候再学习哪来得及!
2.把握朗读节奏。示例:舜/发于/畎亩之中,傅说/举于/版筑之间,胶鬲/举于/鱼盐之中,管夷吾/举于/士,孙叔敖/举于/海,百里奚/举于/市。故/天将降大任/于是人也,必先/苦/其心志,劳/其筋骨,饿/其体肤,空乏/其身,行/拂/乱/其所为,所以/动心/忍性,曾益/其所不能。3.反复朗读,并结合课文注释,感知文义。4.教师引导梳理文章大意,梳理文言现象。【通假字】曾益其所不能(曾,同“增”,增加)衡于虑(衡,同“横”,梗塞、不顺)入则无法家拂士(拂,同“弼”,辅佐)【使动用法】必先苦其心志(使……痛苦)劳其筋骨(使……劳累)饿其体肤(使……饥饿)目标导学二:把握论点,理清论证思路1.文章开头列举了六个人物,他们的共同点是什么?明确:他们的共同点:都出身卑微,历经苦难磨炼,最终都被提拔任用,有所作为。
【再读课文,梳理结构】1. 文章标题为“北冥有鱼”,后来怎么又写鸟了?鸟是由鱼变化而来的。鲲的体形有几千里,变成鸟后,鸟的脊背不知有几千里长。说明庄子想象力丰富。2. 鸟为什么要迁徙到南冥?南冥是天人的大池,是鸟心目中的理想境地,是要追求一种精神的自由。3. 鲲鹏由北海飞到南海,需要借助什么条件?“海运则将徙于南冥”“抟扶摇而上者九万里,去以六月息者也”4. 句子赏析:“鹏之徙于南冥也,水击三千里,抟扶摇而上者九万里。”词句运用丰富的想象,奇特的夸张,描写了鲲鹏振翼拍水,盘旋飞向九万里高空的形象,这一形象能激发人的豪情壮志,具有强烈的艺术感染力。“击”“抟”等字传神、生动,让人产生丰富的想象和联想。
《海的女儿》介绍小人鱼亲自参加王子的婚礼,忍受身体和精神的苦痛,一步步变成泡沫,走向死亡的故事。这是一个凄美的爱情故事。成功之处:在教学过程中,以学生为主体,让学生在读通文章之后出示一些重点语句。我在教学中能够放手给学生,让他们在文本中充分品味挖掘语言的魅力内涵。让学生边读边想象,由理解句子表面的意思过渡到感悟作者蕴藏在句子中的情感,小组讨论阶段,学生在充分讨论的过程中对作者的情感就有了一定的感悟,再通过教师的点拨指导,认识上就更深一层次,对今后阅读安徒生的作品帮助很大。不足之处:由于注重了写作方法的学习,对朗读的指导就比较少,在以后的教学中要注意教学时间的合理分配。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。