提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

中班数学《图形分类》说课稿

  • 3.30全国中小学生安全教育日国旗下讲话稿

    3.30全国中小学生安全教育日国旗下讲话稿

    同学们:“全国中中职生安全教育日”是定在每年3月份的最后一个星期的星期一。今天是3月30日,是XX年3月份最后一个星期的周一,所以在此跟同学们谈以下几个全面:1、做好春季防病。春季是多种传染病流行的季节,同学们要注意个人卫生,勤洗手,教室勤通风,勤锻炼,不暴饮暴食。2、不允许玩火、玩电,防止人身伤害,防止意外事故的发生。禁止将爆竹、火柴、打火机等易燃、易爆品带入校园,更不允许将刀、弹弓、防真气枪等危险玩具带进校园。

  • 小学数学教案与反思

    小学数学教案与反思

    教学要求:1、结合生活中的具体情境,通过“数铅笔”等活动,经历从具体情境中抽象出数的模型的过程;会数、会读、会写100以内的数;在具体情境中把握数的相对大小关系;能够运用数进行表达和交流,体会数与日常生活的密切联系。 2、结合生活情境,学生将经历从具体情境中抽象出加减法算式的过程,进一步体会加减法的意义;探索并掌握100以内加减法和连加、连减、加减混合的计算方法,并能正确计算;能根据具体问题,估计运算的结果;初步学会应用加减法解决生活中的简单问题,感受加减法与日常生活的密切联系。3、通过购物活动,结合生活经验,认识元、角、分及其相互关系,认识各种面额的人民币;结合购物情境进行简单计算,解决简单的实际问题。

  • 《剪对称鱼形》教案

    《剪对称鱼形》教案

    本课属于“造型、表现”学习领域。选定本课是想借助民间剪纸的形式学习剪纸、学习剪对称形和镂空技巧。通过剪对称鱼形,认识将纸对折剪制表现对称形的方法,接触基本的镂空技巧表现鱼形的内外花纹,培养巧剪花纹的动手能力,并养成安全使用剪刀、细致耐心的意识,为今后运用纸媒材进行多种造型活动打好基础。为了完成学习任务,我提供了典型的不同鱼形图片,拓宽学生对鱼形的记忆表象;同时让学生通过观察与分析学会如何打扮鱼儿的花纹样式,强调留下来的部分要始终保持相连。

  • 《剪对称鱼形》教案

    《剪对称鱼形》教案

    探讨方法步骤。欣赏鱼的剪纸图片,老师介绍:师:在剪纸中,鱼是人们非常喜爱的题材,鱼经常和年年有余结合在一起,有余的余是多余的意思,每年都有剩余的东西,就是有钱啦,富裕啦。师:既然要剪鱼,就得先了解鱼的结构,鱼由几部分组成?生:鱼身、鱼头、鱼尾、鱼鳍。师用flash展示鱼结构图:在剪纸过程中,我们可以把鱼头看成鱼身的一部分。所以鱼分成鱼身、鱼尾、鱼鳍三部分。师:看了这么多鱼形,大家已经在思考自己要剪得鱼形了。我们的目标是剪对称鱼形,对称是什么意思?生:对折。师:好!小组讨论,剪对称鱼的步骤,先做什么后做什么(小组讨论)师:请小朋友说一说,你们组的方法步骤生:折——画——剪师:步骤的确是这样。我们一起来看怎么实际操作。画的时候还可以有很多的改变,如花纹,形状,看看欧老师的(第二次flash动画展示步骤,在画这一步时,把画好了的展示在黑板上,适当介绍牙牙纹,线纹,花瓣纹)

  • 《剪对称鱼形》教案

    《剪对称鱼形》教案

    方法探讨。1、学习剪对称鱼形的基本方法。观察教材上步骤图,哪位小朋友说一说剪对称鱼形的过程是什么?小结:先将纸反折,在反面画出鱼形后再剪。(折—画—剪)2、引导学生设计画出独特的鱼形。(1)、设问解疑:请小朋友们给老师帮帮忙,一是对折后是把整条鱼都画下来呢,还是只画半条鱼?二是画在对折纸的什么位置好?小结:我们应该把鱼形的一半画在靠折痕一边,而不是靠开口那边。(2)、根据鱼的结构特点,引导画出独特鱼形的思路。老师这里画了热带鱼、剑鱼、飞鱼鱼形的一半的示意图,请小朋友们根据鱼的头、身、尾、鳍各组成部分比一比,说一说,有什么不同?小结:大自然中的鱼多种多样,有的鱼瘦瘦的长长的、有的鱼胖胖的圆圆的、有的鱼像三角形。鱼鳍有的大有的小、有的像半圆形、有的像齿轮、有的像长了翅膀一样……鱼尾有长有短、有的像剪刀、有的像水滴……如果想剪出一条独特的鱼,画的时候可以突出和夸张它一个有趣的特征。

  • 《隐形的翅膀》教案

    《隐形的翅膀》教案

    教学过程一、创设情境导入。请全体同学闭上眼睛,播放贝多芬的第五交响曲《命运》第一乐章主部主题。师:我们刚才听的是什么乐曲,它渲染的是什么样的氛围?生:说明作者的一生也是多灾多难,并没有屈服。二、学唱歌曲,感受信念这双隐形的翅膀。1、初听歌曲(1)师范唱前面部分;(2)再听歌手演唱的歌曲。师:请同学听一听歌手张韶涵深情演唱的歌曲《隐形的翅膀》。听后说一说歌曲给你的感觉。(如旋律、节奏、声音等)2、用深情的语气朗读歌词,并说说给你印象最深刻的歌词。3、轻声跟琴学唱歌曲。师:让我们来学唱这首歌,近距离的感受一下歌曲里到底潜藏着什么秘密?师弹奏钢琴:(1)用字母wu模唱歌曲。(2)跟琴轻声学唱歌曲。4、授以歌唱的一些基本方法(气声唱法,高音的唱法,最后一句,休止符)。5、解决难点句,指导高音的唱法。6、完整而深情的演唱歌曲。7、为歌曲创编舞蹈(融汇手语与舞蹈),动员学生全体参与,并边歌边舞。8、抛出问题:什么事隐形的翅膀,导出下一环节。

  • 形象设计合同

    形象设计合同

    依据《中华人民共和国合同法》和有关法规的规定,乙方接受甲方的委托,就委托设计事项,双方经协商一致,签订本合同,信守执行:一、合同内容及要求:进行品牌的形象设计。二、费用:设计与制作费用总计为:人民币¥ 元,(大写: 元整)。三、付款方式:1、甲方需在合同签订时付委托设计与制作总费用的30%即人民币 ¥ _________ 元,(大写: )。3、乙方将设计最终方案交付甲方时,甲方需向乙方支付合同余款,即人民币¥ 元整(大写: )。四、设计与制作作品的时间及交付方式:1、乙方需在双方约定的时间内完成设计方案。因甲方反复提出修改意见导致乙方工作不能按时完成时,可延期执行,延期时间由双方协商确定。五、知识产权约定:1、甲方在未付清所有费用之前,乙方设计的作品著作权归乙方,甲方对该作品不享有任何权利。2、甲方将委托设计的所有费用结算完毕后,甲方拥有作品的所有权、使用权和修改权。

  • 大班音乐教案:《数蛤蟆》

    大班音乐教案:《数蛤蟆》

    活动目标:1. 让幼儿了解这是一首四川民歌,知道四川方言中把青蛙称做"蛤蟆",使幼儿通过数蛤蟆的嘴、眼、腿,对青蛙有出步的了解和认识.2. 初步掌握歌曲的旋律,提高幼儿演唱技能,训练幼儿用各种感官(耳听旋律、眼看画面、嘴说歌词、身体动作)来感受歌曲的内容,增强幼儿的感受力和节奏感3. 教育小朋友要从小爱护小动物.活动重点:在熟悉歌曲之后,能够会表演.活动难点:让幼儿掌握歌曲的内容及其旋律.活动准备:环境布置(池塘),青蛙头饰,录音机,磁带,课件.

  • 大班亲子教案:找对数

    大班亲子教案:找对数

    活动准备:各种动物的图片 活动建议:家长和孩子面对面坐着,一边拍手,一边说儿歌。  可以有几种形式:  开始的时候,家长说,孩子对  当孩子对儿歌的内容基本了解后,家长与孩子一起说。  当孩子把儿歌的内容都记住了,让孩子说,家长对。  当这首儿歌熟悉后,可以适当改变内容,如哪个爱在水里游,可以回答“鸭子爱在水里游”,也可回答“鱼儿爱在水里游”。

  • 初中数学鲁教版七年级上册《第五章 位置与坐标 1 确定位置》教学设计教案

    初中数学鲁教版七年级上册《第五章 位置与坐标 1 确定位置》教学设计教案

    1、通过同位之间互说座位位置,检测知识目标2、3的达成效果。2、通过导学案上的探究一,检测知识目标2、3的达成效果。 3、通过探究二,检测知识目标1、3的达成效果。 4、通过课堂反馈,检测总体教学目标的达成效果。本节课遵循分层施教的原则,以适应不同学生的发展与提高,针对学生回答问题本着多鼓励、少批评的原则,具体从以下几方面进行评价:1、通过学生独立思考、参与小组交流和班级集体展示,教师课堂观察学生的表现,了解学生对知识的理解和掌握情况。教师进行适时的反应评价,同时促进学生的自评与互评。2、通过设计课堂互说座位、探究一、二及达标检测题,检测学习目标达成情况,同时有利于学生完成对自己的评价。3.通过课后作业,了解学生对本课时知识的掌握情况,同时又能检测学生分析解决问题的方法和思路,完成教学反馈评价。

  • 人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(1)

    人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(1)

    本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;

  • 人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(2)

    人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(2)

    本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.

  • 人教A版高中数学必修二有限样本空间与随机事件事件的关系和运算教学设计

    人教A版高中数学必修二有限样本空间与随机事件事件的关系和运算教学设计

    新知讲授(一)——随机试验 我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示。我们通常研究以下特点的随机试验:(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但事先不确定出现哪个结果。新知讲授(二)——样本空间思考一:体育彩票摇奖时,将10个质地和大小完全相同、分别标号0,1,2,...,9的球放入摇奖器中,经过充分搅拌后摇出一个球,观察这个球的号码。这个随机试验共有多少个可能结果?如何表示这些结果?根据球的号码,共有10种可能结果。如果用m表示“摇出的球的号码为m”这一结果,那么所有可能结果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间。

  • 空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

  • 抛物线及其标准方程教学设计人教A版高中数学选择性必修第一册

    抛物线及其标准方程教学设计人教A版高中数学选择性必修第一册

    本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 双曲线及其标准方程教学设计人教A版高中数学选择性必修第一册

    双曲线及其标准方程教学设计人教A版高中数学选择性必修第一册

    ∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.

上一页123...265266267268269270271272273274275276下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。