
本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.

由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系. 数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念; 2.逻辑推理:正弦曲线与余弦曲线的联系; 3.直观想象:正弦函数余弦函数的图像; 4.数学运算:五点作图; 5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.

本节课是正弦函数、余弦函数图像的继续,本课是正弦曲线、余弦曲线这两种曲线的特点得出正弦函数、余弦函数的性质. 课程目标1.了解周期函数与最小正周期的意义;2.了解三角函数的周期性和奇偶性;3.会利用周期性定义和诱导公式求简单三角函数的周期;4.借助图象直观理解正、余弦函数在[0,2π]上的性质(单调性、最值、图象与x轴的交点等);5.能利用性质解决一些简单问题. 数学学科素养1.数学抽象:理解周期函数、周期、最小正周期等的含义; 2.逻辑推理: 求正弦、余弦形函数的单调区间;3.数学运算:利用性质求周期、比较大小、最值、值域及判断奇偶性.4.数学建模:让学生借助数形结合的思想,通过图像探究正、余弦函数的性质.重点:通过正弦曲线、余弦曲线这两种曲线探究正弦函数、余弦函数的性质; 难点:应用正、余弦函数的性质来求含有cosx,sinx的函数的单调性、最值、值域及对称性.

教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的余弦公式与正弦公式. *创设情境 兴趣导入 问题 我们知道,显然 由此可知 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 在单位圆(如上图)中,设向量、与x轴正半轴的夹角分别为和,则点A的坐标为(),点B的坐标为(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用诱导公式可以证明,(1)、(2)两式对任意角都成立(证明略).由此得到两角和与差的余弦公式 (1.1) (1.2) 公式(1.1)反映了的余弦函数与,的三角函数值之间的关系;公式(1.2)反映了的余弦函数与,的三角函数值之间的关系. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 25

本节课是三角函数的继续,三角函数包含正弦函数、余弦函数、正切函数.而本课内容是正切函数的性质与图像.首先根据单位圆中正切函数的定义探究其图像,然后通过图像研究正切函数的性质. 课程目标1、掌握利用单位圆中正切函数定义得到图象的方法;2、能够利用正切函数图象准确归纳其性质并能简单地应用.数学学科素养1.数学抽象:借助单位圆理解正切函数的图像; 2.逻辑推理: 求正切函数的单调区间;3.数学运算:利用性质求周期、比较大小及判断奇偶性.4.直观想象:正切函数的图像; 5.数学建模:让学生借助数形结合的思想,通过图像探究正切函数的性质. 重点:能够利用正切函数图象准确归纳其性质并能简单地应用; 难点:掌握利用单位圆中正切函数定义得到其图象.
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。
课程目标 | 学科素养 |
1.了解两角差的余弦公式的推导过程. 2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式. 3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法. 4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 | a.数学抽象:公式的推导; b.逻辑推理:公式之间的联系; c.数学运算:运用和差角角公式求值; d.直观想象:两角差的余弦公式的推导; e.数学建模:公式的灵活运用;
|
教学重点:掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式
教学难点:两角和与差的正弦、余弦、正切公式的灵活运用。
多媒体
教学过程 | 设计意图 核心教学素养目标 |
(一)创设问题情境 提出问题 1.两角差的余弦公式 如果已知任意角α,β的正弦、余弦,能由此推出α+β,α-β的正弦、余弦吗? 下面,我们来探究cos(α-β)与角α,β的正弦、 余弦之间的关系 不妨令kπ+β,k∈Z. 如图5.5.1,设单位圆与轴的正半轴相交于点A(1,0),以轴非负半轴为始边作角α,β,α—β,它们的终边分别与单位圆相交于点(cosα,sinα), (cosβ,sinβ),P(cos(α-β),sin(α-β)).任意一个圆绕着其圆心旋转任意角后都与原来的圆重合,这一性质叫做圆的旋转对称性.连接,AP.若把扇形OAP,绕着点O旋转β角,则点A,P分别与点 重合.根据圆的旋转对称性可知, 与重合,从而, 所以AP= 根据两点间的距离公式,得 化简得: =+ 当kπ+β (k∈Z)时,容易证明上式仍然成立. 所以,对于任意角α,β有 =+ (C(α-β)) 此公式给出了任意角α,β的正弦、余弦与其差角α-β的余弦之间的关系, 称为差角的余弦公式,简记作C(α-β). 典例解析 例1 利用公式证明: (1)= ; (2)= . 证明: (1)= + =0+1=. (2)== + =(-1).=- . 例2 已知,∈(,), ,是第三象限角,求的值. 解:由,∈(,),得 又由,是第三象限角,得. 所以=+ =() ()+() ()= 由公式 出发 , 你能推导出两角和与差的三角函数的其他公式吗? 下面以公式 为基础来推导其他公式 . 例如 , 比较 与 ,并注意到 α + β 与 之间的联系 :=则由公式 , 有==+= 于是得到了两角和的余弦公式 , 简记作 C(α + β ) . =. 问题探究 上面得到了两角和与差的余弦公式 . 我们知道 , 用诱导公式五 ( 或六 ) 可以实现正弦 、 余弦的互化 . 你能根据 C (α + β ) , C ( α - β ) 及诱导公式五 ( 或六 ), 推导出用任意角α , β 的正弦 、 余弦表示 sin ( α + β ), sin( α - β ) 的公式吗 ? 通过推导 , 可以得到 : = ,( S(α + β ) ) = ; ( S(α - β ) ) 你能根据正切函数与正弦函数 、 余弦函数的关系 , 从 C(α β ) , S( α β ) 出发 , 推导出用任意角 α , β 的正切表示 , 的公式吗 ? 通过推导 , 可以得到 : T(α + β ) T(α β ) 和 ( 差 ) 角公式中 , α , β 都是任意角 . 如果令 α 为某些特殊角 , 就能得到许多有用的公式 . 你能从和 ( 差 ) 角公式出发推导出诱导公式吗 ? 你还能得到哪些等式 公式 S(α + β ) , C(α + β ) , T(α + β ) 给出了任意角 α , β 的三角函数值与其和角 α + β 的三角函数值之间的关系 . 为方便起见 , 我们把这三个公式都叫做 和角公式 . 类似地 , S(α- β ) , C(α- β ) , T(α- β )都叫做 差角公式 . 典例解析 例3. 已知,,求的值 . 解 : 由 得 所以 于是有 由以上解答可以看到 , 在本题条件下有 . 那么对于任意角α , 此等式成立吗 ? 若成立 , 你会用几种方法予以证明? 例 4 利用和 ( 差 ) 角公式计算下列各式的值 : ( 1 )sin72cos42- cos72sin42 ; ( 2 ) cos20cos70- sin20sin70 ; ( 3 ) ; 分析 : 和 、 差角公式把 α β 的三角函数式转化成了 α , β 的三角函数式 . 如果反过来 , 从右到左使用公式 , 就可以将上述三角函数式化简 . 解 :( 1 ) 由公式 S(α - β ) , 得 sin72cos42- cos72sin42=Sin(72- 42)=sin30= (2) 由公式 C(α +β ) , 得 cos20cos70- sin20sin70= cos(20+70)=cos90=0 (3) 由公式 T(α +β )及, 得 === = |
通过开门见山,提出问题,利用坐标法,推导两角差的余弦公式,培养和发展数学抽象、直观想象的核心素养。
通过对两角差的余弦公式的运用,发展学生,直观想象、数学抽象、数学运算等核心素养;
通过其它和差角公式的推导和应用,发展学生,直观想象、数学抽象、数学运算等核心素养;
通过对典型问题的分析解决,发展学生数学建模、逻辑推理,直观想象、数学抽象、数学运算等核心素养;
|
三、当堂达标 1. cos 65cos 35+sin 65sin 35等于( ) A.cos 100 B.sin 100 C. D. 【解析】 原式=cos(65-35)=cos 30=. 【答案】 C 2.已知α是锐角,sin α=,则cos等于( ) A.- B. C.- D. 【解析】 因为α是锐角,sin α=, 所以cos α=,所以cos=-=.故选B. 【答案】 B 3.已知锐角α,β满足cos α=,cos(α+β)=-,则cos β等于( ) A. B.- C. D.- 【解析】 因为α,β为锐角,cos α=,cos(α+β)=-, 所以sin α=,sin(α+β)=. 所以cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-+=.故选A. 【答案】 A 4.计算=________. 【解析】 ==tan 45=1. 【答案】 1 5.已知α,β均为锐角,sin α=,cos β=,求α-β. 【解】 ∵α,β均为锐角,sin α=,cos β=, ∴sin β=,cos α=. ∵sin α ∴sin(α-β)=sin αcos β-cos αsin β=-=-, ∴α-β=-. |
通过练习巩固本节所学知识,巩固对和差和差距角公式的运用,增强学生的直观想象、数学抽象、数学运算、逻辑推理的核心素养。
|
转载请注明出处!本文地址:
https://www.lfppt.com/worddetails_26341132.html
这套以 “新年到好运来” 为主题的 2026 马年手抄报,设计兼顾美观与实用性,包含彩色成品、空白填写版及黑白线稿版,适配不同使用需求。整体风格喜庆活泼,融合传统年味与童趣元素,画面以红橙为主色调,搭配福字、金元宝、红灯笼、烟花等传统装饰,还有孩童放鞭炮的可爱插画,契合春节氛围。内容板块清晰,设有 “春节起源” 栏目,可科普春节古称 “岁首” 及上古祭祀的起源背景;“马年初一” 板块聚焦新年首日习俗,寓意马年吉祥顺遂;“2026 新年心愿” 栏目则为使用者预留了书写美好期许的空间,既具知识性,又能承载个性化祝福,是一份兼具教育意义与互动性的新年手抄报模板。

1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。

一是要把好正确导向。严格落实主体责任,逐条逐项细化任务,层层传导压力。要抓实思想引领,把理论学习贯穿始终,全身心投入主题教育当中;把理论学习、调查研究、推动发展、检视整改等有机融合、一体推进;坚持学思用贯通、知信行统一,努力在以学铸魂、以学增智、以学正风、以学促干方面取得实实在在的成效。更加深刻领会到******主义思想的科学体系、核心要义、实践要求,进一步坚定了理想信念,锤炼了政治品格,增强了工作本领,要自觉运用的创新理论研究新情况、解决新问题,为西北矿业高质量发展作出贡献。二是要加强应急处事能力。认真组织开展好各类理论宣讲和文化活动,发挥好基层ys*t阵地作用,加强分析预警和应对处置能力,提高发现力、研判力、处置力,起到稳定和引导作用。要坚决唱响主旋律,为“打造陕甘片区高质量发展标杆矿井”、建设“七个一流”能源集团和“精优智特”新淄矿营造良好的舆论氛围。三是加强舆情的搜集及应对。加强职工群众热点问题的舆论引导,做好舆情的收集、分析和研判,把握时、度、效,重视网上和网下舆情应对。

二是深耕意识形态。加强意识形态、网络舆论阵地建设和管理,把握重大时间节点,科学分析研判意识形态领域情况,旗帜鲜明反对和抵制各种错误观点,有效防范处置风险隐患。积极响应和高效落实上级党委的决策部署,确保执行不偏向、不变通、不走样。(二)全面深化党的组织建设,锻造坚强有力的基层党组织。一是提高基层党组织建设力量。压实党建责任,从政治高度检视分析党建工作短板弱项,有针对性提出改进工作的思路和办法。持续优化党建考核评价体系。二是纵深推进基层党建,打造坚强战斗堡垒。创新实施党建工作模式,继续打造党建品牌,抓实“五强五化”党组织创建,广泛开展党员教育学习活动,以实际行动推动党建工作和经营发展目标同向、部署同步、工作同力。三是加强高素质专业化党员队伍管理。配齐配强支部党务工作者,把党务工作岗位作为培养锻炼干部的重要平台。

二要专注于解决问题。根据市委促进经济转型的总要求,聚焦“四个经济”和“双中心”的建设,深入了解基层科技工作、学术交流、组织建设等方面的实际情况,全面了解群众的真实需求,解决相关问题,并针对科技工作中存在的问题,采取实际措施,推动问题的实际解决。三要专注于急难愁盼问题。优化“民声热线”,推动解决一系列基层民生问题,努力将“民声热线”打造成主题教育的关键工具和展示平台。目前,“民声热线”已回应了群众的8个政策问题,并成功解决其中7个问题,真正使人民群众感受到了实质性的变化和效果。接下来,我局将继续深入学习主题教育的精神,借鉴其他单位的优秀经验和方法,以更高的要求、更严格的纪律、更实际的措施和更好的成果,不断深化主题教育的实施,展现新的风貌和活力。

今年3月,市政府出台《关于加快打造更具特色的“水运XX”的意见》,提出到2025年,“苏南运河全线达到准二级,实现2000吨级舶全天候畅行”。作为“水运XX”建设首战,谏壁闸一线闸扩容工程开工在即,但项目开工前还有许多实际问题亟需解决。结合“到一线去”专项行动,我们深入到谏壁闸一线,详细了解工程前期进展,实地察看谏壁闸周边环境和舶通航情况,不断完善施工设计方案。牢牢把握高质量发展这个首要任务,在学思践悟中开创建功之业,坚定扛起“走在前、挑大梁、多做贡献”的交通责任,奋力推动交通运输高质量发展持续走在前列。以学促干建新功,关键在推动高质量发展持续走在前列。新时代中国特色社会主义思想着重强调立足新发展阶段、贯彻新发展理念、构建新发展格局,推动高质量发展,提出了新发展阶段我国经济高质量发展要坚持的主线、重大战略目标、工作总基调和方法论等,深刻体现了这一思想的重要实践价值。

这套 “元宵节快乐” 手抄报以暖黄为主色调,融入萌娃吃汤圆、醒狮贺岁、红灯笼等元素,年味浓郁且充满童真,包含彩色成品、彩色空白、黑白线稿、浅线稿四种版式,兼顾范例参考与自主创作。内容板块聚焦元宵节核心民俗,“元宵节的习俗” 介绍赏花灯、猜灯谜的传统由来;“元宵节美好寓意” 解读团圆、祈福的文化内涵;“元宵节猜灯谜” 讲述这一趣味活动的历史与魅力。各板块以矩形、云朵形边框清晰划分,层次分明,成品提供详实的民俗知识与文案范例,空白版本便于学生填充个人的元宵经历与感悟,是兼具文化性与实用性的元宵节主题手抄报模板。

这套 “寒假生活” 手抄报以冬日雪景为基底,搭配滑雪孩童、捧书阅读等童趣插画,色彩明快且充满生活气息,涵盖彩色成品、彩色空白、黑白线稿、浅线稿四种版式,兼顾范例参考与学生自主创作需求。内容板块设计贴合小学生寒假日常,“滑雪之旅” 记录户外滑雪的趣味经历与挑战自我的感悟;“寒假书法练习” 讲述坚持练字的过程与收获;“寒假读书计划” 分享《海底两万里》等书籍的阅读心得;“寒假总结” 复盘假期的学习、运动与志愿服务收获,反思不足并规划新学期。各板块以异形边框清晰划分,层次分明,成品提供优质文案范例,空白版本便于学生填充个人假期故事,是助力小学生梳理寒假生活、记录成长的实用模板。

这套 “大年初一拜大年” 手抄报以红金为主色调,融入萌娃拜年、财神送福、红灯笼等元素,年味浓郁且童趣十足,包含彩色成品、彩色空白、黑白线稿、浅线稿四种版式,兼顾范例参考与自主创作。内容板块聚焦大年初一传统习俗,“初一拜年的由来” 讲述年兽传说与拜年习俗的起源;“团圆喜乐” 描绘初一阖家团圆、吃饺子年糕、收红包的温馨场景;“马年初一” 则结合生肖寓意,传递新春的活力与美好祝福。各板块以矩形、圆形边框清晰划分,层次分明,成品提供详实的民俗知识与文案范例,空白版本便于学生填充个人的拜年经历与新春感悟,是兼具文化性与实用性的春节主题手抄报模板。

这套 “寒假生活” 手抄报以冬日雪景为背景,融入滑雪、堆雪人等童趣插画,整体风格清新活泼,兼具观赏性与实用性,包含彩色成品、彩色空白、黑白线稿、浅线稿四种版式,适配不同创作需求。内容板块设计贴合小学生寒假生活,“我的寒假读书计划” 记录阅读《海底两万里》等书籍的收获,分享做读书笔记的心得;“一场难忘的滑雪之旅” 讲述滑雪的经历与 “坚持就能成功” 的感悟;“寒假运动” 板块则介绍了每日运动计划与健身收获。各板块以云朵、矩形等异形边框区分,层次分明,成品提供优质内容范例,空白版本便于学生填充个人假期故事,是助力小学生梳理寒假生活的优质模板。

这套 “寒假生活” 手抄报设计充满冬日暖意,以蓝白为主色调,搭配雪人、红柿、孩童堆雪等元素,既显节日氛围又富童真。版式包含彩色成品、彩色空白、黑白线稿、浅线稿四种,兼顾范例参考与自主创作需求。内容板块聚焦寒假核心生活,“滑雪之旅” 记录户外体验的乐趣与挑战,“寒假读书计划” 分享《海底两万里》等书籍的阅读收获,“寒假书法练习” 讲述坚持练字的成长感悟,“寒假总结” 复盘假期的收获与不足。板块以粉色边框清晰划分,内容兼具趣味性与教育性,空白版本则为学生预留了书写个人假期故事的空间,是适配小学生的优质寒假作业模板。

这套 “你好寒假” 手抄报设计精巧,兼具实用性与美观性,以冬日蓝为主色调,搭配堆雪人、读书等童趣插画,营造出浓厚的假期氛围。版式上分为彩色成品、彩色空白、黑白线稿、浅线稿四种版本,适配不同使用需求。内容板块丰富且贴合小学生生活,“滑雪之旅” 记录户外实践的快乐,“寒假总结” 复盘成长收获,“寒假读书计划” 分享阅读感悟,“寒假书法练习” 展现坚持的意义。各板块以云朵、矩形等边框区分,层次清晰,既为学生提供了优秀的内容范例,空白版本也方便孩子们填充自己的假期故事,是一份兼具展示与创作价值的寒假作业模板。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。