2.内容内在逻辑本单元是人教八年级上册道德与法治学科第三单元的内容,在逻辑结构上起 着承上启下的作用,本单元包括两课四框内容。第六课“责任与角色同在”,两框分别是“我对谁负责 谁对我负责”、“做 负责任的人”:第一框“我对谁负责 谁对我负责”旨在引导学生学习社会责任,培养学生 责任意识,使学生认识到责任与角色同在,对自己的责任有明确的认识,增强责 任意识;能够随着角色的变换调整决策行为,能够对自己、对社会承担责任的人 心怀感激之情。第二框“做负责任的人”旨在让学生认识到承担责任意味着回报也意味着代价,要学会承担责任,更要为自己的选择负责,崇敬那些不言代价与回报且无私 奉献的人,努力做一个负责任的公民。第七课“积极奉献社会”,两框分别是“关爱他人”、“服务社会”。
2.内容内在逻辑本单元《责任与角色同在》重点在责任意识的培养,为培养学生服务社会的 精神做好铺垫。第一框“我对谁负责 谁对我负责”,是从“认识责任”的角度厘清责任的 相关知识,包含责任的含义、责任的来源、责任与角色的关系,使学生明确自身 应承担的责任,理解承担责任对个人和社会的意义。第二框“做负责任的人”,是在第一框“认识责任”的基础之上,进一步探 讨“承担责任”。引导学生认识到承担责任意味着要付出一定的代价,也会获得 回报,要学会合理选择并对自己的选择负责。对于不是自愿选择但又必须做的事 要自觉承担、尽力做好,努力向履行社会责任却不计得失的人学习。综合来看,第一框主要帮助学生从思想上认清责任的来源以及责任与角色的 关系,明确责任是相互的。要成为负责任的人,关键还是要落实到行动中。第二 框则进一步引导学生从行动上提高责任意识, 主动承担责任。两框内容是有机统 一的。
情景一 :小明发现利用手机不仅可以查阅资料 、学习新知 、广交朋友, 还可以聊微信 、 刷抖音 、 玩游戏 。 小明感叹: 一机在手 , 天 下我有!情景二: 在使用过程中 , 小明还发现 , 广告插件无处不在 , 明星八卦 扑面而来 , 各种信息真假难辨 。 游曳在五光十色的网海里 , 小 明 经 常 旷 课 , 成 绩 不 断 下 滑 , 越 来 越 不 愿 与 人 打 交 道 , 经 常宅在家里 ,沉迷游戏 ,最后还因为在网络上诈骗而被拘留。小明再一次感叹: 一机在手 , 毁我所有!请你根据情景,结合所学 内容 , 回答下列问题:(1)两 则材料共 同说 明了什 么? 请谈谈你对 “ 一机在手 , 毁我所有 ” 的理解 。 (6 分)(2)对 比两则材料 , 你 能得 到 哪些启示? (三个方面 即可 ) (6 分)【心系社会 公益有我】12. ( 18 分 ) “海 阔凭鱼跃 ,天 高任鸟飞 。 ”置 身于前所未有 的广 阔天地, 我们要主动融入绚丽多彩的社会生活 ,树立积极的生活态度 ,学会互 助关爱 、合作共享 ,承担起我们作为社会成 员的 责任 。某校八 (1) 班 同学在团支部带领下,开展了以“心系社会 · 公益有我”为主题的探究性学 习活动,请你参与并完成下列任务。
背景素材:北京师范大学团队发布了全国“区域教育质量健康体检”报告 考点考查:网络的利与弊、合理利用网络能力考查:调动和运用知识,论证和探究问题核心素养:公共参与(1) 第一步:本题的设问主体是教育部“禁入”的依据,联系网络对青少年的影响的 相关内容;第二步:有效信息:要求学生原则上不得将个人手机带入校园→从网络的利与弊、未 成年人缺乏控制能力和自我保护意识、沉迷网络的危害性等角度进行分析;第三步:组织答案。得分点:网络是把双刃剑,有利也有弊;未成年人身心发育尚不 成熟, 自我能力较弱,辨别是非和自我控制能力不强,更容易受到手机网络消极因素 的影响和不法侵害,需要给予特殊保护;这样做有利于避免未成年人沉迷于手机网络, 有利于未成年人专心学习,保护未成年人身心健康成长。(2) 本题考查对如何来合理利用网络的认识和理解,属于课本中基础知识的范畴,结 合相关课本知识进行回答。
(1)图片表现: 网络上信息很丰富。(2)面对网络海量的信息, 我们要注意浏览、寻找与学习和工作 有关的信息, 不应在无关信息面前停留, 不应在无聊信息是浪费精 力,更不可沉溺于网络,要学会“信息节食”10、某中学八年级 400 多名学生, 在田地里上了一堂生动有趣的劳 动体验实践课——插秧。据相关负责人介绍, 劳动体验实践课走进 田间地头, 可以丰富孩子们的课余生活, 拓展视野, 锻炼综合实践 能力。学生学插秧既可感受中华传统农耕文化的魅力, 体验农民劳 作的艰辛生活, 也让他们悟出“锄禾日当午, 汗滴禾下土”的真实 意义。(1)亲社会行为有哪些意义?(2)请列举两个你生活中的亲社会行为。(3) 中学生怎样才能养成亲社会行为?设计意图:本题设计意图在于结合实际事例, 引导学生对事例进行讨论, 分析, 促使学生能够理性对待,培养学生理论联系实际的能力参考答案:(1) 有利于我们养成良好的行为习惯,塑造健康的人格,形成正 确的价值观念,获得他人和社会的接纳与认可。(2) 当志愿者,参加公益活动。
(一) 单元质量检测内容一、单项选择题1.2021 年实施的《中华人民共和国民法典》第 183 条规定:“因保护他人民事权益使自己受到损害的, 由侵权人承担民事责任, 受益人可以给予适当补偿。没有 侵权人、侵权人逃逸或者无力承担民事责任, 受害人请求补偿的, 受益人应当给予 适当补偿。”这样的规定,有助于( )①弘扬真善美的行为 ②培养人们的亲社会行为③依法维护见义勇为者的合法权益 ④使身处危难之中的人们得到及时救助 A.①② B.②③④ C.①③④ D.①②③④ 2.宣城市宣州区疫情防控应急指挥部 7 月 26 日下午发布信息:7 月 26 日上午,一网友在名称为“宣城的士之声交流群”的微信聊天群中散布消息, 称宣城有一人 核酸检测呈阳性。经核查, 此为不实信息, 属于谣言, 公安机关已介入调查, 请广 大群众及时关注政府官方公告、信息, 以官方发布消息为准, 不造谣、不传谣、不 信谣。对此,网民应该( )①严厉打击制造、传播谣言的行为,让谣言止于智者②塑造批判性思维,对信息进行甄别,抵制不良信息③提高网络媒介素养,自觉践行社会主义核心价值观
(一)旧知回顾(老师提出问题,同学回答。红色部分为学生回答后,老师给出的答案。)1、通过上节课的学习,你知道除了正数还有哪些数?答:1)0和负数。2)0既不是正数,也不是负数。2、用正数和负数表示具有相反意义的量。举例:如果把一个物体向后移动5m,记作移动-5m;那么这个物体向前移动5m,记作移动5m。原地不动,记作移动0m。
在教学上,我采用了摸花片给幼儿猜的形式引导幼儿复习5的组成。在教学信息和感知材料的呈现上,我选用了教具模型演示法,让幼儿明确操作的要求和进行操作的方法。在思维活动的组织上,我还通过讲解、比较的方法,将幼儿解决问题的种种策略展示出来,引导幼儿观察分析,找出哪一种是最好的。坚持使教法有利于突出教材重点,突破难点,符合幼儿认识规律和年龄特征。根据教学内容和采取的教学方法及手段,我教给幼儿一些学习的方法。操作法是幼儿学习数学的基本方法。幼儿通过操作进行学习,我对幼儿的操作给予必要的指导,让幼儿去探索、发现,这样的学法可以让幼儿获得宝贵的数学经验,在教给幼儿操作法的同时,考虑到本课内容和幼儿的学习情况,对于学习速率快的幼儿,我教给他们讨论交流的方法,学习速率慢的幼儿,我教给他们按顺序有重点地观察的方法,做到授之于渔。
一、 引入课题1. 复习初中所学函数的概念,强调函数的模型化思想;2. 阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题3. 引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4. 根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
序数是用来表示集合中元素排列次序的数,是用自然数表示事物排列的次序,如:排队、乘车、着电影的座位都是序数的内容。中班幼儿认知活动的具体形象性和行为的有意性明显发展,能依靠表象进行思维,认知活动的概括性使幼儿对事物的理解增强,感受和发现周围环境中物体数量间的差异、物体的形状、以及它们的空间的位置等。本次活动以幼儿喜欢的动物为主题,在游戏中愉快地学习7以内的序数。并通过自身的操作,初步感知开始的方向发生变化,物体排列位置也随之变化的现象。让幼儿在看一看、说一说、玩一玩、摆一摆中理解序数的含义。
新知探究我们知道,等差数列的特征是“从第2项起,每一项与它的前一项的差都等于同一个常数” 。类比等差数列的研究思路和方法,从运算的角度出发,你觉得还有怎样的数列是值得研究的?1.两河流域发掘的古巴比伦时期的泥版上记录了下面的数列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《庄子·天下》中提到:“一尺之锤,日取其半,万世不竭.”如果把“一尺之锤”的长度看成单位“1”,那么从第1天开始,每天得到的“锤”的长度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在营养和生存空间没有限制的情况下,某种细菌每20 min 就通过分裂繁殖一代,那么一个这种细菌从第1次分裂开始,各次分裂产生的后代个数依次是2,4,8,16,32,64,… ⑤4.某人存入银行a元,存期为5年,年利率为 r ,那么按照复利,他5年内每年末得到的本利和分别是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
二、典例解析例4. 用 10 000元购买某个理财产品一年.(1)若以月利率0.400%的复利计息,12个月能获得多少利息(精确到1元)?(2)若以季度复利计息,存4个季度,则当每季度利率为多少时,按季结算的利息不少于按月结算的利息(精确到10^(-5))?分析:复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息.所以若原始本金为a元,每期的利率为r ,则从第一期开始,各期的本利和a , a(1+r),a(1+r)^2…构成等比数列.解:(1)设这笔钱存 n 个月以后的本利和组成一个数列{a_n },则{a_n }是等比数列,首项a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12个月后的利息为10 490.7-10^4≈491(元).解:(2)设季度利率为 r ,这笔钱存 n 个季度以后的本利和组成一个数列{b_n },则{b_n }也是一个等比数列,首项 b_1=10^4 (1+r),公比为1+r,于是 b_4=10^4 (1+r)^4.
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
我们知道数列是一种特殊的函数,在函数的研究中,我们在理解了函数的一般概念,了解了函数变化规律的研究内容(如单调性,奇偶性等)后,通过研究基本初等函数不仅加深了对函数的理解,而且掌握了幂函数,指数函数,对数函数,三角函数等非常有用的函数模型。类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规律的数列,建立它们的通项公式和前n项和公式,并应用它们解决实际问题和数学问题,从中感受数学模型的现实意义与应用,下面,我们从一类取值规律比较简单的数列入手。新知探究1.北京天坛圜丘坛,的地面有十板布置,最中间是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的示板数依次为9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型号的女装上对应的尺码分别是38,40,42,44,46,48 ②3.测量某地垂直地面方向上海拔500米以下的大气温度,得到从距离地面20米起每升高100米处的大气温度(单位℃)依次为25,24,23,22,21 ③
二、典例解析例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请确定d的范围.分析:该设备使用n年后的价值构成数列{an},由题意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}为公差为-d的等差数列.10年之内(含10年),该设备的价值不小于(220×5%=)11万元;10年后,该设备的价值需小于11万元.利用{an}的通项公式列不等式求解.解:设使用n年后,这台设备的价值为an万元,则可得数列{an}.由已知条件,得an=an-1-d(n≥2).所以数列{an}是一个公差为-d的等差数列.因为a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由题意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范围为19<d≤20.9
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
情景导学古语云:“勤学如春起之苗,不见其增,日有所长”如果对“春起之苗”每日用精密仪器度量,则每日的高度值按日期排在一起,可组成一个数列. 那么什么叫数列呢?二、问题探究1. 王芳从一岁到17岁,每年生日那天测量身高,将这些身高数据(单位:厘米)依次排成一列数:75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①记王芳第i岁的身高为 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我们发现h_i中的i反映了身高按岁数从1到17的顺序排列时的确定位置,即h_1=75 是排在第1位的数,h_2=87是排在第2位的数〖"…" ,h〗_17 =168是排在第17位的数,它们之间不能交换位置,所以①具有确定顺序的一列数。2. 在两河流域发掘的一块泥板(编号K90,约生产于公元前7世纪)上,有一列依次表示一个月中从第1天到第15天,每天月亮可见部分的数:5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。