提供各类精美PPT模板下载
当前位置:首页 > Word模板 > 教育教学 > 课件教案> 人教版高中数学选择性必修二数列的概念(1)教学设计
  • 收藏模板
    下载模板
  • 模板信息
  • 更新时间:2023-10-27
  • 字数:约7314字
  • 页数:约11页
  • 格式:.docx
  • 推荐版本:Office2016及以上版本
  • 售价:5 金币 / 会员免费

您可能喜欢的文档

  • 人教版高中数学选择性必修二等差数列的概念(1)教学设计

    人教版高中数学选择性必修二等差数列的概念(1)教学设计

    我们知道数列是一种特殊的函数,在函数的研究中,我们在理解了函数的一般概念,了解了函数变化规律的研究内容(如单调性,奇偶性等)后,通过研究基本初等函数不仅加深了对函数的理解,而且掌握了幂函数,指数函数,对数函数,三角函数等非常有用的函数模型。类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规律的数列,建立它们的通项公式和前n项和公式,并应用它们解决实际问题和数学问题,从中感受数学模型的现实意义与应用,下面,我们从一类取值规律比较简单的数列入手。新知探究1.北京天坛圜丘坛,的地面有十板布置,最中间是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的示板数依次为9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型号的女装上对应的尺码分别是38,40,42,44,46,48 ②3.测量某地垂直地面方向上海拔500米以下的大气温度,得到从距离地面20米起每升高100米处的大气温度(单位℃)依次为25,24,23,22,21 ③

  • 人教版高中数学选择性必修二等比数列的概念 (1) 教学设计

    人教版高中数学选择性必修二等比数列的概念 (1) 教学设计

    新知探究我们知道,等差数列的特征是“从第2项起,每一项与它的前一项的差都等于同一个常数” 。类比等差数列的研究思路和方法,从运算的角度出发,你觉得还有怎样的数列是值得研究的?1.两河流域发掘的古巴比伦时期的泥版上记录了下面的数列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《庄子·天下》中提到:“一尺之锤,日取其半,万世不竭.”如果把“一尺之锤”的长度看成单位“1”,那么从第1天开始,每天得到的“锤”的长度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在营养和生存空间没有限制的情况下,某种细菌每20 min 就通过分裂繁殖一代,那么一个这种细菌从第1次分裂开始,各次分裂产生的后代个数依次是2,4,8,16,32,64,… ⑤4.某人存入银行a元,存期为5年,年利率为 r ,那么按照复利,他5年内每年末得到的本利和分别是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥

  • 人教版高中数学选择性必修二等差数列的概念(2)教学设计

    人教版高中数学选择性必修二等差数列的概念(2)教学设计

    二、典例解析例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请确定d的范围.分析:该设备使用n年后的价值构成数列{an},由题意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}为公差为-d的等差数列.10年之内(含10年),该设备的价值不小于(220×5%=)11万元;10年后,该设备的价值需小于11万元.利用{an}的通项公式列不等式求解.解:设使用n年后,这台设备的价值为an万元,则可得数列{an}.由已知条件,得an=an-1-d(n≥2).所以数列{an}是一个公差为-d的等差数列.因为a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由题意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19

  • 人教版高中数学选择性必修二等比数列的概念 (2) 教学设计

    人教版高中数学选择性必修二等比数列的概念 (2) 教学设计

    二、典例解析例4. 用 10 000元购买某个理财产品一年.(1)若以月利率0.400%的复利计息,12个月能获得多少利息(精确到1元)?(2)若以季度复利计息,存4个季度,则当每季度利率为多少时,按季结算的利息不少于按月结算的利息(精确到10^(-5))?分析:复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息.所以若原始本金为a元,每期的利率为r ,则从第一期开始,各期的本利和a , a(1+r),a(1+r)^2…构成等比数列.解:(1)设这笔钱存 n 个月以后的本利和组成一个数列{a_n },则{a_n }是等比数列,首项a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12个月后的利息为10 490.7-10^4≈491(元).解:(2)设季度利率为 r ,这笔钱存 n 个季度以后的本利和组成一个数列{b_n },则{b_n }也是一个等比数列,首项 b_1=10^4 (1+r),公比为1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中数学选择性必修二导数的概念及其几何意义教学设计

    人教版高中数学选择性必修二导数的概念及其几何意义教学设计

    新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即

  • 查看更多相关Word文档

数列的概念(1)教学设计

本节课选自《2019人教A版高中数学选择性必修二》第四章《数列》,本节课主要学习数列的概念与表示

“数列的概念与简单表示法”,主要涉及数列的概念、表示方法、分类、通项公式、数列和函数之间的关系等。数列是刻画离散现象的数学模型,是一种离散型函数,在日常生活中有着重要的应用.学习数列对深化函数的学习有着积极地意义,数列是以后学习极限的基础,因此,数列在高中数学中占有重要位置。数列的概念是学习数列的起点与基础,因而建立数列的概念是本章教学的重点,更是本节课教学的重点。学生主动自我建构概念,需要经历辨析、抽象、概括等过程,影响概念学习过程的因素又是多样的,所以,数列特征的感知和描述,函数意义的概括和理解,是教学的难点.

课件教案

课程目标

学科素养

A.理解数列的有关概念与数列的表示方法.

B.掌握数列的分类.

C.理解数列的函数特征,掌握判断数列增减性的方法.

D.掌握数列通项公式的概念及其应用,能够根据数列的前几项写出数列的一个通项公式.

1.数学抽象:数列的概念及表示、数列的分类

2.逻辑推理:求数列的通项公式

3.数学运算:运用数列通项公式求特定项

4.数学建模:数列的概念

重点:数列的有关概念与数列的表示方法

难点:数列的函数特征

多媒体

教学过程

教学设计意图

核心素养目标

一、 情景导学

古语云:“勤学如春起之苗,不见其增,日有所长”如果对“春起之苗”每日用精密仪器度量,则每日的高度值按日期排在一起,可组成一个数列. 那么什么叫数列呢?

二、问题探究

1. 王芳从一岁到17岁,每年生日那天测量身高,将这些身高数据(单位:厘米)依次排成一列数:

75,87,96,103,110,116,120,128,138,

145,153,158,160,162,163,165,168 ①

记王芳第的身高为,那么=75 , =87, =168.我们发现中的反映了身高按岁数从1到17的顺序排列时的确定位置,即=75 是排在第1位的数,=87是排在第2位的数 =168是排在第17位的数,它们之间不能交换位置,所以①具有确定顺序的一列数。

2. 在两河流域发掘的一块泥板(编号K90,约生产于公元

前7世纪)上,有一列依次表示一个月中从第1天到第15天,

每天月亮可见部分的数:

5,10,20,40,80,96,112,128,

144,160,176,192,208,224,240. ②
记第月亮可见部分的数为, 那么=5 , =10, =240.这里,中的反映了月亮可见部分的数按日期从1~15顺序排列时的确定位置,即=5是排在第1位的数,=10是排在第2位的数=240是排在第15位的数,它们之间不能交换位置,所以,②也是具有确定顺序的一列数。

3. -次幂按1次幂, 2次幂, 3次幂, 4次幂……依次排成一列数:

- ,,- ,… ③

思考:你能仿照上面的叙述,说明③也是具有确定顺序的一列数吗?

一、数列

1.定义:一般地,我们把按照确定的顺序排列的一列数称为数列.

2.项:数列中的每一个数叫做这个数列的项.数列的第一个位置上的数叫做这个数列的第1项,常用符号a1表示;第二个位置上的数叫做这个数列的第2项,用a2表示……第n个位置上的数叫做这个数列的第n项,用an表示.其中第1项也叫做首项.

3.表示:数列的一般形式是a1,a2,…,an,…,简记为{an}.

点睛:(1)数列是按一定的“顺序”排列的一列数,有序性是数列的基本属性.数相同而顺序不同的两个数列是不相同的数列,

例如1,2,3,…与3,2,1…就是不同的数列.

(2)符号{an}和an是不同的概念,{an}表示一个数列,而an表示数列中的第n项.

二、数列的分类

类别

含义

按项的

个数

有穷数列

项数有限的数列

无穷数列

项数无限的数列

按项的变化趋势

递增数列

从第2项起,每一项都大于它的前一项的数列

递减数列

从第2项起,每一项都小于它的前一项的数列

常数列

各项相等的数列

摆动数列

从第2项起,有些项大于它的前一项,有些项

小于它的前一项的数列

三、数列与函数

数列{an}是从正整数集N*(或它的有限子集{1,2,…,n})到实数集R的函数,

其自变量是序号n,对应的函数值是数列的第n项an,

记为an=f(n).

另一方面,对于函数y=f(x),

如果f(n)(n∈N*)有意义,

那么 构成了一个数列{f(n)}.

f(1),f(2),…,f(n),…

1. 下列叙述正确的是( )

A.所有数列可分为递增数列和递减数列两类

B.数列中的数由它的位置序号唯一确定

C.数列1,3,5,7可表示为{1,3,5,7}

D.同一个数在数列中不可能重复出现

解析:按项的变化趋势,数列可分为递增数列、递减数列、常数列、摆动数列等数列,A错误;数列1,3,5,7与由实数1,3,5,7组成的集合{1,3,5,7}是两个不同的概念,C错误;同一个数在数列中可能重复出现,如2,2,2,…表示由实数2构成的常数列,D错误;对于给定的数列,数列中的数由它的位置序号唯一确定,B正确.

答案:B

四、数列的通项公式

如果数列{an}的第n项an与它的序号n之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.

点睛:(1)数列的通项公式实际上是一个以正整数集N*(或它的有限子集){1,2,…,n}为定义域的函数表达式.

(2)并不是所有的数列都有通项公式.

(3)同一数列的通项公式,其表达形式可以是不唯一的,例如数列

-1,1,-1,1,-1,1,…的通项公式可以写成an=(-1)n,an=(-1)n+2,an=cos nπ等.

1.若数列{an}的通项公式是an=n2-1,则该数列的第10项a10= ,224是该数列的第 项.

解析:a10=102-1=99.令an=n2-1=224,解得n=15,

即224是该数列的第15项.

答案:99 15

三、典例解析

例1. 根据下列数列{an}的通项公式,写出数列的前5项,并画出它们的图像.
(1) (2)

解:(1)当通项公式中的n=1,2,3,4,5 时,数列{an}的前5项依次为1,3,6,10,15
如图所示(1)

(2)当通项公式中的n=1,2,3,4,5 时,数列 {an}的前5项依次为1,0,-1,0,1

如图所示(2)

例2. 根据数列的前4项,写出下列数列的一个通项公式:

(1),2,,8,,…;

(2)1,-3,5,-7,9,…;

(3)9,99,999,9 999,…;

(4),…;

(5)-,-,…;

(6)4,0,4,0,4,0,….

解:(1)数列的项有的是分数,有的是整数,可先将各项都统一成分数再观察,,…,所以,它的一个通项公式为an=.

(2)数列各项的绝对值分别为1,3,5,7,9,…是连续的正奇数,其通项公式为2n-1;考虑(-1)n+1具有转换符号的作用,所以数列的一个通项公式为an=(-1)n+1(2n-1).

(3)各项加1后,分别变为10,100,1 000,10 000,…,此数列的通项公式为10n,可得原数列的一个通项公式为an=10n-1.

(4)数列中每一项均由三部分组成,分母是从1开始的奇数列,其通项公式为2n-1;分子的前一部分是从2开始的自然数的平方,其通项公式为(n+1)2,分子的后一部分是减去一个自然数,其通项公式为n,综合得原数列的一个通项公式为an=.

(5)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式是an=(-1)n.

(6)由于该数列中,奇数项全部都是4,偶数项全部都是0,因此可用分段函数的形式表示通项公式,即an=又因为数列可改写为2+2,2-2,2+2,2-2,2+2,2-2,…,因此其通项公式又可表示为an=2+2(-1)n+1.

根据数列的前几项写通项公式的具体思路为:

(1)先统一项的结构,如都化成分数、根式等.

(2)分析这一结构中变化的部分与不变的部分,探索变化部分的规律与对应序号间的关系.

(3)对于符号交替出现的情况,可先观察其绝对值,再用(-1)k处理符号.

(4)对于周期出现的数列,考虑利用周期函数的知识解答.

2.常见数列的通项公式

(1)数列-1,1,-1,1,…的一个通项公式是an=(-1)n,数列1,-1,1,-1,…

的一个通项公式是an=(-1)n+1或(-1)n-1.

(2)数列1,2,3,4,…的一个通项公式是an=n.

(3)数列1,3,5,7,…的一个通项公式是an=2n-1.

(4)数列2,4,6,8,…的一个通项公式是an=2n.

(5)数列1,2,4,8,…的一个通项公式是an=2n-1.

(6)数列1,4,9,16,…的一个通项公式是an=n2.

(7)数列1,3,6,10,…的一个通项公式是an=.

(8)数列1,,…的一个通项公式是an=.

跟踪训练1.写出下列数列的一个通项公式,使它的前4项分别是下列各数:

(1)1,; (2)2,4,6,8;

(3)3,5,9,17; (4);

(5)7,77,777,7 777.

解:(1)an=;(2)an=2n+;(3)an=2n+1;

(4)an=;(5)an=(10n-1).

例3 (1)已知数列{an}满足an=n2-5n-6,n∈N*.

①数列中有哪些项是负数?

②当n为何值时,an取得最小值?求出此最小值.

(2)已知数列{an}的通项公式an=(n+1)(n∈N*),试问数列{an}有没有最大项?若有,求出最大项和最大项的项数;若没有,请说明理由.

分析:(1)①根据数列的函数的特征,以及不等式的解法,即可求出;②根据二次函数的性质即可求出.

(2)数列{an}的通项计算an+1-an确定单调性求解最大(小)项

(1)解:①an=n2-5n-6<0,解得0

∵n∈N*,∴数列中第1,2,3,4,5项为负数,

即-10,-12,-12,-10,-6.

②an=n2-5n-6=,当n=2,3时,an取得最小值,最小值为-12.

(2)解法一:∵an+1-an=(n+2)-(n+1)

=,

∴当n<9时,an+1-an>0,即an+1>an;

当n=9时,an+1-an=0,即an+1=an;

当n>9时,an+1-an<0,即an+1

故a1a11>a12>…,

∴数列中有最大项,最大项为第9,10项,即a9=a10=.

解法二:设ak是数列{an}的最大项,

整理,得得9≤k≤10,

所以k=9或k=10.又a1=

求数列的最大(小)项的两种方法

(1)由于数列是特殊的函数,所以可以用研究函数的思想方法来研究数列的相关性质,如单调性、最大值、最小值等,此时要注意数列的定义域为正整数集或其有限子集{1,2,…,n}这一条件.

(2)可以利用不等式组(n>1)找到数列的最大项;

利用不等式组(n>1)找到数列的最小项.

变式探究:在本例(2)中,若已知数列的通项公式an=,n∈N*,试求该数列{an}的最小项.

解:设第n项an最小,则

即解得

所以5≤n≤6,所以n=5或n=6.又a1=>a5=a6,

即a5与a6都是数列的最小项,且a5=a6=.

通过古诗及生活中的情景,引导学生运用数学眼光,分析问题,进行数学分析。发展学生数学抽象、数学运算、数学建模的核心素养。

通过具体问题的思考和分析,帮助学生观察、分析、归纳总结出数列的概念。发展学生数学抽象和数学建模的核心素养。

通过数列概念的解读,并与集合、函数概念的比较,深化对数列概念的理解。发展学生数学抽象、逻辑推理和数学建模的核心素养。

通过典型例题,加深学生对数列概念的理解和运用,发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素

通过典型例题,帮助灵活运用数列的概念解决问题,发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。


最新课件教案文档
  • 精选高中生期末评语

    精选高中生期末评语

    1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。

  • 公司2024第一季度意识形态工作联席会议总结

    公司2024第一季度意识形态工作联席会议总结

    一是要把好正确导向。严格落实主体责任,逐条逐项细化任务,层层传导压力。要抓实思想引领,把理论学习贯穿始终,全身心投入主题教育当中;把理论学习、调查研究、推动发展、检视整改等有机融合、一体推进;坚持学思用贯通、知信行统一,努力在以学铸魂、以学增智、以学正风、以学促干方面取得实实在在的成效。更加深刻领会到******主义思想的科学体系、核心要义、实践要求,进一步坚定了理想信念,锤炼了政治品格,增强了工作本领,要自觉运用的创新理论研究新情况、解决新问题,为西北矿业高质量发展作出贡献。二是要加强应急处事能力。认真组织开展好各类理论宣讲和文化活动,发挥好基层ys*t阵地作用,加强分析预警和应对处置能力,提高发现力、研判力、处置力,起到稳定和引导作用。要坚决唱响主旋律,为“打造陕甘片区高质量发展标杆矿井”、建设“七个一流”能源集团和“精优智特”新淄矿营造良好的舆论氛围。三是加强舆情的搜集及应对。加强职工群众热点问题的舆论引导,做好舆情的收集、分析和研判,把握时、度、效,重视网上和网下舆情应对。

  • 关于2024年上半年工作总结和下半年工作计划

    关于2024年上半年工作总结和下半年工作计划

    二是深耕意识形态。加强意识形态、网络舆论阵地建设和管理,把握重大时间节点,科学分析研判意识形态领域情况,旗帜鲜明反对和抵制各种错误观点,有效防范处置风险隐患。积极响应和高效落实上级党委的决策部署,确保执行不偏向、不变通、不走样。(二)全面深化党的组织建设,锻造坚强有力的基层党组织。一是提高基层党组织建设力量。压实党建责任,从政治高度检视分析党建工作短板弱项,有针对性提出改进工作的思路和办法。持续优化党建考核评价体系。二是纵深推进基层党建,打造坚强战斗堡垒。创新实施党建工作模式,继续打造党建品牌,抓实“五强五化”党组织创建,广泛开展党员教育学习活动,以实际行动推动党建工作和经营发展目标同向、部署同步、工作同力。三是加强高素质专业化党员队伍管理。配齐配强支部党务工作者,把党务工作岗位作为培养锻炼干部的重要平台。

  • XX区民政局党支部开展主题教育工作情况总结报告

    XX区民政局党支部开展主题教育工作情况总结报告

    二要专注于解决问题。根据市委促进经济转型的总要求,聚焦“四个经济”和“双中心”的建设,深入了解基层科技工作、学术交流、组织建设等方面的实际情况,全面了解群众的真实需求,解决相关问题,并针对科技工作中存在的问题,采取实际措施,推动问题的实际解决。三要专注于急难愁盼问题。优化“民声热线”,推动解决一系列基层民生问题,努力将“民声热线”打造成主题教育的关键工具和展示平台。目前,“民声热线”已回应了群众的8个政策问题,并成功解决其中7个问题,真正使人民群众感受到了实质性的变化和效果。接下来,我局将继续深入学习主题教育的精神,借鉴其他单位的优秀经验和方法,以更高的要求、更严格的纪律、更实际的措施和更好的成果,不断深化主题教育的实施,展现新的风貌和活力。

  • 交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言

    交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言

    今年3月,市政府出台《关于加快打造更具特色的“水运XX”的意见》,提出到2025年,“苏南运河全线达到准二级,实现2000吨级舶全天候畅行”。作为“水运XX”建设首战,谏壁闸一线闸扩容工程开工在即,但项目开工前还有许多实际问题亟需解决。结合“到一线去”专项行动,我们深入到谏壁闸一线,详细了解工程前期进展,实地察看谏壁闸周边环境和舶通航情况,不断完善施工设计方案。牢牢把握高质量发展这个首要任务,在学思践悟中开创建功之业,坚定扛起“走在前、挑大梁、多做贡献”的交通责任,奋力推动交通运输高质量发展持续走在前列。以学促干建新功,关键在推动高质量发展持续走在前列。新时代中国特色社会主义思想着重强调立足新发展阶段、贯彻新发展理念、构建新发展格局,推动高质量发展,提出了新发展阶段我国经济高质量发展要坚持的主线、重大战略目标、工作总基调和方法论等,深刻体现了这一思想的重要实践价值。

  • XX区文旅体局2023年工作总结 及2024年工作安排

    XX区文旅体局2023年工作总结 及2024年工作安排

    三、2024年工作计划一是完善基层公共文化服务管理标准化模式,持续在公共文化服务精准化上探索创新,围绕群众需求,不断调整公共文化服务内容和形式,提升群众满意度。推进乡镇(街道)“114861”工程和农村文化“121616”工程,加大已开展活动的上传力度,确保年度目标任务按时保质保量完成。服务“双减”政策,持续做好校外培训机构审批工作,结合我区工作实际和文旅资源优势,进一步丰富我市义务教育阶段学生“双减”后的课外文化生活,推动“双减”政策走深走实。二是结合文旅产业融合发展示范区,全力推进全域旅游示范区创建,严格按照《国家全域旅游示范区验收标准》要求,极推动旅游产品全域布局、旅游要素全域配置、旅游设施全域优化、旅游产业全域覆盖。

今日更新Word
  • 精选高中生期末评语

    精选高中生期末评语

    1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。

  • ××县招商局2024年上半年工作总结

    ××县招商局2024年上半年工作总结

    二是全力推进在谈项目落地。认真落实“首席服务官”责任制,切实做好上海中道易新材料有机硅复配硅油项目、海南中顾垃圾焚烧发电炉渣综合利用项目、天勤生物生物实验基地项目、恺德集团文旅康养产业项目、三一重能风力发电项目、中国供销集团冷链物流项目跟踪对接,协调解决项目落户过程中存在的困难和问题,力争早日实现成果转化。三是强化招商工作考核督办。持续加大全县招商引资工作统筹调度及业务指导,贯彻落实项目建设“6421”时限及“每月通报、季度排名、半年分析、年终奖励”相关要求,通过“比实绩、晒单子、亮数据、拼项目”,进一步营造“比学赶超”浓厚氛围,掀起招商引资和项目建设新热潮。四是持续优化园区企业服务。

  • “四零”承诺服务创建工作总结

    “四零”承诺服务创建工作总结

    (二)坚持问题导向,持续改进工作。要继续在提高工作效率和服务质量上下功夫,积极学习借鉴其他部门及xx关于“四零”承诺服务创建工作的先进经验,同时主动查找并着力解决困扰企业和群众办事创业的难点问题。要进一步探索创新,继续优化工作流程,精简审批程序,缩短办事路径,压缩办理时限,深化政务公开,努力为企业当好“保姆”,为群众提供便利,不断适应新时代人民群众对政务服务的新需求。(三)深化内外宣传,树立良好形象。要深入挖掘并及时总结作风整顿“四零”承诺服务创建工作中形成的典型经验做法,进一步强化内部宣传与工作交流,推动全市创建工作质效整体提升。要面向社会和公众庄严承诺并积极践诺,主动接受监督,同时要依托电台、电视台、报纸及微信、微博等各类媒体大力宣传xx队伍作风整顿“四零”承诺服务创建工作成果,不断扩大社会知情面和群众知晓率。

  • “改作风、提效能”专项行动工作总结

    “改作风、提效能”专项行动工作总结

    (五)服务群众提效能方面。一是政府采购服务提档升级。建成“全区一张网”,各类采购主体所有业务实现“一网通办,提升办事效率;全面实现远程开标和不见面开标,降低供应商成本;要求400万元以上工程采购项目预留采购份额提高至采购比例的40%以上,支持中小企业发展。2022年,我区政府采购荣获”中国政府采购奖“,并以全国第一的成绩获得数字政府采购耕耘奖、新闻宣传奖,以各省中第一的成绩获得年度创新奖。二是财政电子票据便民利民。全区财政电子票据开具量突破1亿张,涉及资金810.87亿元。特别是在医疗领域,全区241家二级以上公立医疗机构均已全部上线医疗收费电子票据,大大解决了群众看病排队等待时间长、缴费取票不方便的问题,让患者”省心、省时、省力“。

  • “大学习、大讨论、大调研”活动情况总结报告

    “大学习、大讨论、大调研”活动情况总结报告

    一、活动开展情况及成效按照省委、市委对“大学习、大讨论、大调研”活动的部署要求,县委立即行动,于8月20日组织召开常委会会议,专题传达学习省委X在读书班上的讲话精神。5月2日,县委召开“大学习、大讨论、大调研”活动推进会,及时对活动开展的相关要求、任务进行再安排再部署,会后制定并下发了活动实施方案、重点课题调研方案、宣传报道方案等系列文件,有效指导活动开展。5月17日、9月1日,县委再次召开常委会会议,专题听取“大学习、大讨论、大调研”活动开展情况汇报,研究部署下阶段工作。9月13日,召开全县“大学习大讨论大调研”活动工作推进座谈会,深入贯彻全省、全市“大学习大讨论大调研”活动工作推进座谈会精神,总结交流活动经验,对下一阶段活动开展进行安排部署。“大学习、大讨论、大调研”活动的有序开展,为砥砺前行、底部崛起的X注入了强大的精神动力。

  • 2024年度工作计划汇编(18篇)

    2024年度工作计划汇编(18篇)

    1.市政基础设施项目5项,总建设里程2.13km,投资概算2.28亿元。其中,烔炀大道(涉铁)工程施工单位已进场,项目部基本建成,正在办理临时用地、用电及用水等相关工作;中铁佰和佰乐(巢湖)二期10KV外线工程已签订施工合同;黄麓镇健康路、纬四路新建工程均已完成清单初稿编制,亟需黄麓镇完成图审工作和健康路新建工程的前期证件办理;公安学院配套道路项目在黄麓镇完成围墙建设后即可进场施工。2.公益性建设项目6项,总建筑面积15.62万㎡,投资概算10.41亿元。其中,居巢区职业教育中心新建工程、巢湖市世纪新都小学扩建工程已完成施工、监理招标挂网,2月上旬完成全部招标工作;合肥职业技术学院大维修三期已完成招标工作,近期签订施工合同后组织进场施工;半汤疗养院净化和医用气体工程已完成招标工作;半汤疗养院智能化工程因投诉暂时中止;巢湖市中医院(中西医结合医院)新建工程正在按照既定计划推进,预计4月中下旬挂网招标。