一、说教材我说课的课题是《三位数除以一位数》,本课是人教版三年级下册第二单元除数是一位数的除法的笔算方法第二课时。这节课是在学生掌握了两位数除以一位数的笔算基础上进行教学的。首先回顾两位数除以一位数的笔算,在此基础上,鼓励学生尝试将过去掌握的两位数除以一位数的算法迁移到三位数除以一位数的笔算上来,它是以后学习较复杂除法的基础,也是学习数与代数的基础之一。1、教学目标(1)使学生理解掌握三位数除以一位数的笔算方法,培养学生有序思考的能力。(2)使学生在活动中积极地探索并理解算理,激发学生学习的热情。 (3)使学生感受数学与生活的联系,能够运用所学知识解决生活中的简单问题。2、教学重难点重点:掌握三位数除以一位数的笔算方法。难点:掌握三位数除以一位数的笔算方法并验算。
一、教学内容本节课是人教版三年级下册第二单元第一课时(口算除法)的教学内容。二、知识背景《口算除法》是在学生掌握了表内乘、除法,一位数乘多位数的基础上进行教学的,为后面学生掌握除数是两位数的除法,学习除数是多位数的除法奠定了扎实的知识和思维基础。本节课教材在编排上注意体现新的教学理念,将计算教学与解决问题相结合,让学生感受到学习数学的实用价值。本节课教材安排了主题图和例1,主题图为我们提供的资源是一幅运送蔬菜的场景图,通过小精灵的问题“你能提出什么问题?”引出除数是一位数的口算除法。三、教学目标:知识与技能1、理解掌握口算整十、整百、整千数除以一位数的算理,能正确熟练地口算。2、培养学生自主探究能力、抽象概括能力、解决问题的能力、数学表达能力和渗透转化、迁移类推的数学思想方法。过程与方法以学生为主体,引导其独立思考,合作交流,共同探讨一位数除整十整百数的口算方法和算理。
1、教学内容本节课是人教版数学教材三年级下册第二单元《除数是一位数的除法》第二小节《笔算除法》的第一课时——《“一位数除两位数 商是两位数”的笔算除法》。2、教材分析本节课是整数除法的相关知识,学这一内容之前,学生已经具备了口算除法和除法竖式的基础,所以,学生的认知结构已具备同化新知的基础,我认为学生学习本课内容是可行的,但是具有一定的挑战性。学了这一内容后,为学生掌握除数是两位数的除法,学习除数是多位数的除法奠定了扎实的知识和思维基础,让学生在活动中理解笔算除法的算理,探索用竖式计算的合理程序。体现了义务教育为学生终生发展奠定基础这一理念,是学生在以后学习和工作中解决复杂问题的基础。
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
2、发展幼儿思维的逻辑判断能力。活动准备:1、创设超市小货架的环境。2、动物及其食品小图片、房子图、笔等。活动过程:(一) 通过游戏“为小动物买礼物”理解序数。(序数可以从不同的方向数,从不同的方向数得出的结论会不同)1、自由探索:(1)引导幼儿以“到动物食品超市为小动物买礼物”的游戏形式到“超市”购物。 (要求记住在什么颜色的货架上买到货物的)(2)请个别幼儿告诉大家在什么颜色的格子里买到货物,并请其他幼儿猜一猜他是在第几个格格子里买到的东西。
2、学习与同伴友好交往、合作游戏的方法。3、培养幼儿的动手操作能力、迁移能力和逆向思维。活动准备: 1—10数字一套;录音带、录音机;幼儿学具: 1—10的纸牌。活动预设:1、游戏《拍手问答》复习5以内的相邻数。教师边拍手边问,幼儿边拍手边回答。如教师问:小朋友,我问你,3的朋友是几和几?幼儿回答:x老师,告诉你,3的朋友是2和4。(可请个别或集体回答)2、游戏《认邻居》:请若干幼儿自选楼房居住,并认识自己的邻居。学习6的相邻数。知道其与前后数的关系。3、游戏:纸牌乐,两个幼儿为一组。游戏开始,把1—10的纸牌放在桌面上,两个幼儿猜“剪刀石头布”,赢幼儿先取一张纸牌,输的幼儿找出它的相邻数。游戏再次进行,教师巡回指导。
2、发展幼儿思维的逻辑判断能力。3、愿意参加游戏活动,体验游戏的乐趣。活动准备:1、学具:小旗人手一套。2、教具:大数卡一套、房子五座、小旗一面、五种小动物活动过程: 一、用第几座的形式表示不同颜色的房子分别在第几座1、出示房子提问:他们分别是什么颜色?(红、黄、蓝、绿、紫)一共有几座?红房子在第几座?你是从哪边开始数的?有不一样的吗?2、出示小旗提问:现在,我们从哪边开始数?3、做门牌卡:红房子在第一座,用数字几表示?(请幼儿找数字贴在房顶上)
2)、能正确认读数字1、2、3、4。 活动准备:教师幼儿每人一套1~4的数字卡,四个指偶;1~4的圆点卡片每人一套. 活动过程:1)、引起兴趣,导入课题:出示指偶,引起兴趣。 2)、有具体形象到抽象训练:让幼儿操作指偶,复习4以内数的形成,正确认读数字1、2、3、4。 A 、让幼儿出示1个指偶,启发幼儿说出1个指偶的数量用数字“1”来表示,老师出示数字“1”,让幼儿说出像什么并认读。
2. 在寻找数字中,培养幼儿观察、分析的能力;鼓励幼儿能对个人、家庭、交通、通讯、气象等使用的数字用绘画、文字及符号等方式进行记录。3. 帮助幼儿了解数字的重要性,初步理解数字在不同的地方表示不同的意义。活动准备:1. 在日常生活中请幼儿观察、收集生活中经常使用的数字。2. 教师有意识的在班级活动室中布置含有数字的图片和物品,如:时钟、挂历、扑克棋等。3. 请幼儿记住家庭地址(包括门牌号码)电话等。
活动目标:1、通过创设情境、游戏化的教学,让幼儿在操作中理解并区分10以内的单双数;2、培养幼儿从身边事物中发现单双数的能力;3、激发幼儿对单双数的兴趣,能积极主动地参与数学活动。活动准备:2元超市场景、1——10的代用券,红色水彩笔每人一支、幼儿分组操作材料活动过程:一、情景导入,引起兴趣瞧!我们已经来到了2元超市,你们来猜一猜,它为什么叫2元超市呢?二、在购物游戏中体验、感知单双数1、教师讲解游戏规则。数一数,你有几元钱?圈一圈,你能买几样东西?2、幼儿进行购物游戏,提醒幼儿做一个文明小顾客。
活动目标:1、通过一系列的游戏活动,让幼儿认识序数第一至第五。2、发展幼儿思维的逻辑判断能力。活动准备:数字卡片、小旗人手一套、房子(红、黄、蓝、绿、紫)、小动物图片、高楼一栋、记录表活动流程:找房子→举小旗→动物找家→幼儿操作活动过程:一、让幼儿学会用第几座的形式来表示不同颜色的房子分别在第几座。 1、师:好消息,好消息!森林小区要搬迁啦!小动物们请我们去帮忙,我们快出发吧!看,森林里有许多不同颜色的小房子,它们分别是什么颜色?(红、蓝、紫、绿、黄)一共有几座?(5座)你是怎么数的?(幼儿自由发挥/从左往右)2、师:红房子在第几座?3、幼儿回答:第1间。
活动目标(1)了解10以内数字的相邻关系。(2)通过游戏的方式培养幼儿对数学活动的兴趣,在游戏互动中学习。( 3 ) 培养幼儿动手操作能力和交往合作能力。活动准备:1、1——10的数卡若干2、房子图10副3、操作点卡、活动过程:(一)创设情景,引起幼儿兴趣,理解相邻数的关系。 1、师:你们知道什么叫邻居吗?你们旁边的两个朋友是你的邻居,请小朋友们说你旁边的邻居是谁好吗?(幼儿互相说)(二)引导幼儿认识相邻数。1、小朋友们有邻居,数字宝宝也有邻居呢,今天,我们除了客人老师外,还有一些数字宝宝也来了,我们来看看,他们是谁?(出示大数片1——10)。数字宝宝是好朋友,他们都住在数字国王买的新房子里,我们来看看他们的新房子吧。2、(展示房子图),今天数字宝宝们就要搬家住进新房子了,可是他们买的房子是一样的,他们不知道自己到底是住在哪一栋房子。他们请我们大班的小朋友来帮帮忙,把他们送到新房子里去,你们愿意帮助他们吗?
活动准备: 提供三种颜色不同的瓶盖个三个,每人一套1—4的数字卡片。活动过程:1、 分别取三种颜色不同的瓶盖个三个,一一对应排成三横排,中间一排的瓶盖不动,让三排瓶盖变得一排比一排多一个,讨论如何才能做到。2、 找出相应的数字卡片摆在瓶盖的左边,讨论:比3少1的数是几,应排在哪里;比3多1的数是几,应该排在哪里。
知识与技能目标:1. 能正确说出三元一次方程(组)及其解的概念,能正确判别一组数是否是三元一次方程(组)的解;2. 会根据实际问题列出简单的三元一次方程或三元一次方程组。过程与方法目标:1. 通过加深对概念的理解,提高对“元”和“次”的认识。2. 能够逐步培养类比分析和归纳概括的能力,了解辩证统一的思想。情感态度与价值观目标:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。