二是树立问题意识。问题是事物矛盾的直观反映,是实践发展的有力引导,抓住了主要问题,就找到了工作的着力点和突破口。实践中有什么问题,我们在工作中就要研究什么问题,努力解决什么问题。这是最朴实的方法论。比如,关于简化报表的问题。在调查研究中,基层同志反映,工会系统数据库要整合共享,不能都分头管理,多头要数据,重复要数据,还有大量的日常检查填表、统计报表,基层不堪重负,影响队伍力量办实事,“填表不等于工作”,实干才能服务职工。三是注重基层导向。基层是工会全部工作的基础。×市总工会高度重视基层,率先在乡镇街道全部建立总工会,率先明确乡镇街道总工会经费留成×%,率先在乡镇街道全部建立工会服务站,并由市区两级工会分担聘用专职工会社会工作者,有了一支专门的基层工会工作者队伍,保障了基层工会作用发挥。做实基层,夯实基础,工作才能落到实处,工会才能扎根职工群众之中。
四是多措并举,产业发展尽全力。始终把产业振兴作为帮扶工作重点,帮扶之初,引导驻村工作队积极通过实地调研、培训学习等方式,组织村“两委”、产业发展能人等,集中学习产业发展相关政策、技能,外出到周边产业发展示范村等地参观学习取经,让村“两委”干部学习到先进的生产技术和管理经验,帮助他们开拓眼界、打开思路、提升技能,结合村情实际及时制定产业发展规划,最终经过多方考量、征求意见,确定以种植大棚蔬菜、精品水果和油茶等经济作物的产业发展思路。同时,还组织园林维护干部到帮扶村宣传常见病虫害及防治知识,传授种植和修剪技能,帮助提升技能技术,高效发展产业,通过签订分红合同等方式,引导企业、合作社与农户建立“风险共担、农企双赢”的利益联结机制,促进农户共享稳定收益,实现集体增收、群众致富。截至目前,共争取到项目资金、物资xx余万元,帮助发展蔬菜等xx余亩,仅2024年上半年实现销售收入xx余万元,覆盖带动全村xx户脱贫户稳定增收。
活动目标: ◇ 愿意跟着老师一起进行10以内的唱数活动。 ◇ 能按正确的顺序唱数1-10。 ◇ 能合着身体动作有节拍地唱数。 活动准备: ◇ 学具:小矮人指偶,卡纸制作的10步阶梯。 活动过程: ◇ 游戏:小矮人上楼梯 1.老师操作纸偶讲故事: 小矮人很想爬到高高的楼梯上去玩玩,看看上面有什么。小矮人一边爬楼梯一边有节奏地唱数:1 2 3 4 5, 6 7 8 9 10。小矮人爬到了10步高的楼梯上,他高兴得跳呀跳,向小朋友们挥挥手。
活动准备 拉线木偶玩具一个(或用纸板制成的活动拉线木偶人)。(准备的材料是用来创设游戏情境的。若没有活动木偶,也可以采用手偶教具代替。)活动过程1.示木偶人创设游戏情境,引起幼儿的兴趣。 教师以小木偶的El吻向大家自我介绍:“我是木头人。今天我想和小朋友一起玩一个游戏,名字叫‘山上有个木头人。”接着,教师边操作木偶拉线,边念儿歌,帮助幼儿了解游戏的基本内容。 表演结束后,教师继续以木偶的口吻与幼儿交谈。教师可以这样说:“谁想和我玩游戏呢?那你必须先告诉我,刚才我说了些什么?”引导幼儿回忆儿歌内容,学会念游戏儿歌,正确发出每个字音,特别是“山”“上”“三”。(活动开始,采用木偶表演的形式创设游戏情境,更符合小班幼儿的认知特点,更能吸引小班幼儿的注意力,激发幼儿对游戏的兴趣。 在此活动中,教师通过语言激发幼儿学念儿歌,在幼儿学习过程中,要及时纠正幼儿的不正确发音,教幼儿正确地念儿歌·这样可以为以后顺利开展游戏奠定基础。)2.向幼儿介绍游戏的规则及玩法。(1)游戏时须念儿歌,并可自由做动作。儿歌做完后就不能动,也不能发出声音。(2)如果谁动了或发出了声响,就必须将手伸给同伴,而同伴则拉住他的手说:“本来要打千千万万下,因为时间来不及马马虎虎打三下。”然后边拍同伴的手心边说:“一、二、三。游戏结束。(听说游戏规则中一定要包含语言练习的要求,否则就不能达成语言学习的目标。此游戏规则中要求幼儿边念儿歌边进行游戏,这就充分体现了语言练习的要求。 对于小班幼儿来说,教师制定的规则一定要简单,语言也一定要简洁明了,以便于幼儿理解游戏的规则,基本了解游戏的玩法。)
各位老师、各位同学:星期一早上好!再过几天就是“六一”国际儿童节了,首先,我预祝同学们节日愉快!每当“六一”儿童节的时候,同学们都兴高采烈地欢度着自己的节日。那一张张笑脸,一阵阵歌声,都充满了幸福和快乐。但是你是否知道这“六一”节的来历?是否知道当年确定儿童节的时候,是因为世界上有无数的少年儿童在战争中被夺去了幼小的生命。那是在第二次世界大战期间,1942年6月,德国法西斯枪杀了捷克的一个名叫利迪策村的16岁以上的男性公民140余人和全部婴儿,并把妇女和90名儿童押往集中营。村里的房舍、建筑物均被烧毁,好端端的一个村庄就这样被德国法西斯给毁了。为了悼念利迪策村和全世界所有在法西斯侵略战争中死难的儿童,反对帝国主义战争贩子虐杀和毒害儿童,保障儿童权利,1949年11月国际民主妇女联合会在莫斯科召开执委会,正式决定每年6月1日为全世界少年儿童的节日,即国际儿童节。
尊敬的老师亲爱的同学们:大家早上好:“雄关漫道真如铁,而今迈步从头越。”我们即将站在高三这个起跑线上,回首凝望,曾经的奋斗与汗水,伴我们做过高一高二,此刻我们站在高二的尾巴上,我们握不住它,但我们可以用成绩为它披上华丽的袍子,为高二画上圆满的句号。罗曼·罗兰说:“人生最可怕的敌人,就是没有明确的目标。”明确的目标给你百分之五十的动力,而你可以借它跳跃更多。时光如流水,转身我们将面对期末考试,期末可以检测同学们在本学期所学的知识是否扎实,有哪些漏洞和不足?便于我们总结经验和教训,为下一个学期的学习做好打算。以下有几个学习步骤:首先对于未学完的课程,上课一定要认真听讲,课后自主完成老师布置的作业。其次,要合理安排复习时间,在完成作业的前提下有计划的针对弱项科目,不放过任何一个难点。另外,创造良好的学习氛围,能促使我们认真学习,安静的环境更有助于你对理科的一些深入思考。
所属单位机关部门D组织ZT教育可以适当错后启动,拉开时间梯次,但也不能与上级单位间隔时间过长,最晚5月5日前要全面启动。需要强调的是,不管什么时间启动,具体到每个单位、部门,开展ZT教育的时间都不能少于5个月。无论采取哪种方式启动,都要讲清这次ZT教育的重大意义、目标要求、工作安排等。总公司机关各部门、所属各单位、各化工公司要将启动方案报巡回指导组审阅把关,巡回指导组还要现场参加指导各部门、各单位的启动工作。三、高水平进行ZT教育督促指导。强有力的督促指导是搞好ZT教育的重要保证,要把严督实导贯穿指导开展ZT教育全过程。按照D中央要求,总公司所属各单位不再派出指导组。这对总公司巡回指导组来说,担子更重了,既要直接指导所属各单位和化工公司本级D委,又要延伸指导所属单位机关部门、直属单位D组织。
无论采取哪种方式启动,都要讲清这次ZT教育的重大意义、目标要求、工作安排等。总公司机关各部门、所属各单位、各化工公司要将启动方案报巡回指导组审阅把关,巡回指导组还要现场参加指导各部门、各单位的启动工作。三、高水平进行ZT教育督促指导。强有力的督促指导是搞好ZT教育的重要保证,要把严督实导贯穿指导开展ZT教育全过程。按照D中央要求,总公司所属各单位不再派出指导组。这对总公司巡回指导组来说,担子更重了,既要直接指导所属各单位和化工公司本级D委,又要延伸指导所属单位机关部门、直属单位D组织。要把准巡回指导工作定位,切实尊重各单位D委主体地位,紧紧依靠他们开展工作,既指出存在问题又要帮助研究对策,真正实现同题共答。
以学增效,学习董事长讲话的直接要求。 以学习董事长讲话思想为指导,我为在今后工作中解除意识危机、提高工作效率制订了两套学习思路:一是学做事,二是学做人。 学做事,就是强化专业技能的学习,就是坚持查漏补缺,干什么学什么,差什么补什么,集团公司大发展需要什么就汲取什么。董事长20**年的总结报告中明确指出,XXXX是20**年集团工作的重中之重,这是即讲效率又重质量的综合工作。即要有甘于奉献、雷厉风行的工作态度,更要有切合实际、行之有效的工作方法。20**年的业务学习,我认为一重技术强化,二重经验总结,三重横向学习:一是要进一步强化技能,力争把工作做到最精最好,二是要做好经验的总结和方法的传承,提升队伍的整体作战能力,人人都能使独当一面的工作好手,三是要根据集团公司的总体部署和分子公司的目标任务,加强横向学习,提升配合能力,配合整体工作,提升应对临时任务的驾驭能力,确保经手的工作对内经得起集团考核,对外赢得市民赞誉。
在日常工作中用心努力地做好每件事,争取把问题想周到,尽量使自己能做到事半功倍的效果。在财务工作中我始终以提高工作效率和工作质量为目标,力争做到总公司和分公司财务制度统一,积极主动地了解各分公司财务工作中出现的问题,及时上报,及时解决。使得各分公司人员按照_总公司的制度和标准完成每项工作,熟练掌握工作流程,坚持按财务制度办事,保持头脑清醒,及时掌握各公司签订合同和收付工程款项等情况。在工作中发现问题,解决问题,采纳大家提出的合理化建议。
守护幸福不打烊...... 各位老师、同学:大家好!今天,我讲话的题目是《做一个诚信的人》。有这样一个故事:美国一位的心理学家为了研究母亲对人一生的影响时收到两封信,一封来自白宫一位人士,一封来自监狱一位服刑的犯人。他们谈的都是同一件事:小时候母亲给他们分苹果。那位来自监狱的犯人在信中这样写道:小时候,有一天,妈妈拿来几个苹果,红红的,大小各不同。我一眼就看见中间的一个又红又大,十分喜欢,非常想要。这时,妈妈把苹果放在桌上,问我和弟弟:你们想要哪个?我刚想说想要最红的一个,这时弟弟抢先说出我想说的话。妈妈听了,瞪了他一眼,责备他说:好孩子要学会把好东西让给别人,不能总想着自己。于是,我灵机一动,改口说:“妈妈,我想要那个最小的,把大的留给弟弟吧。“妈妈听了,非常高兴,在我的脸上亲了一下,并把那个又红又大的苹果奖励给我。我得到了我想要的东西,从此,我学会了说谎。以后,我又学会了打架、偷、抢,为了得到想要得到的东西,我不择手段。直到现在,我被送进监狱。
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。