问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
问题1. 用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?因为英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出26+10=36种不同的号码.问题2.你能说说这个问题的特征吗?上述计数过程的基本环节是:(1)确定分类标准,根据问题条件分为字母号码和数字号码两类;(2)分别计算各类号码的个数;(3)各类号码的个数相加,得出所有号码的个数.你能举出一些生活中类似的例子吗?一般地,有如下分类加法计数原理:完成一件事,有两类办法. 在第1类办法中有m种不同的方法,在第2类方法中有n种不同的方法,则完成这件事共有:N= m+n种不同的方法.二、典例解析例1.在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,如表,
当A,C颜色相同时,先染P有4种方法,再染A,C有3种方法,然后染B有2种方法,最后染D也有2种方法.根据分步乘法计数原理知,共有4×3×2×2=48(种)方法;当A,C颜色不相同时,先染P有4种方法,再染A有3种方法,然后染C有2种方法,最后染B,D都有1种方法.根据分步乘法计数原理知,共有4×3×2×1×1=24(种)方法.综上,共有48+24=72(种)方法.故选B.答案:B5.某艺术小组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?解:由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人记为甲),只会钢琴的有6人,只会小号的有2人.把从中选出会钢琴与会小号各1人的方法分为两类.第1类,甲入选,另1人只需从其他8人中任选1人,故这类选法共8种;第2类,甲不入选,则会钢琴的只能从6个只会钢琴的人中选出,有6种不同的选法,会小号的也只能从只会小号的2人中选出,有2种不同的选法,所以这类选法共有6×2=12(种).因此共有8+12=20(种)不同的选法.
1、多与孩子交流,多关注孩子的学习,询问孩子在校的学习情况。要善于发现孩子学习上的进步,给予充分地肯定和表扬,并提出新的要求。2、多给孩子一点信心,做孩子成长的强有力的后盾。由于孩子的个体差异,免不了学生的成绩有好有坏,有的孩子由于不爱学习,甚至厌学,导致成绩差,我们应该适当的批评。但是孩子很努力,成绩却不理想,我们更应该给他信心,而不是一味的给他泼冷水。3、为了提高学生成绩,学校也想了很多办法:双基周过关考试,月考,上晚自习等4、家长要重视孩子品德方面的教育。孩子的一言一行,一举一动都要关注。先教孩子成人,后教孩子成才。我们班有几个男生自我约束力很差,在学校经常违规违纪:说谎话,拿别人东西,打架骂人,经常被老师抓住,甚至屡教不改。当然,老师也还有很多做的不够的地方,
一、解放思想、大胆创新 社会在发展,历史在进步,人保公司也处于前所未有的历史变革时期,办公室工作人员必须搭准历史发展的脉搏,跟上历史发展的脚步,合上历史发展的节律。为此,就要解放思想、转变观念、大胆创新。日常工作中要敢于打破旧框框,革除陈规陋习,面对新情况、新问题,要勇于思考,敢于探索,大胆地推进工作创新。如:公文运转如何做到急事急办、特事特办?如何改进接待工作,如何适应业务发展加大宣传工作力度等等。有了超前的意识、大胆创新精神和灵活多变的手段,就能使办公室工作有声有*、富有成效。
一、贫困村贫困户基本情况 章贡区属低山丘陵区,境内山脉多,分属武夷山脉、九连山脉、罗霄山脉余脉,18个贫困村绝大部分地处山区、库区和半丘陵半山区地带,深山区农村远离集镇,交通不便,地势险要,加上地质灾害频发,导致生活困难、致富困难,移民整体搬迁资金压力大。农民往往把水稻种植作为满足生活的单一作物,增收困难。不少农村集体经济收入来源不多,有的是零收入的空壳村。农村通村公路大部分是10年前修建的3.5米宽水泥路,路面狭小、弯道多。全区人均耕地仅0.46亩,导致绿色贫困现象突出。
一、贫困村贫困户基本情况 章贡区属低山丘陵区,境内山脉多,分属武夷山脉、九连山脉、罗霄山脉余脉,18个贫困村绝大部分地处山区、库区和半丘陵半山区地带,深山区农村远离集镇,交通不便,地势险要,加上地质灾害频发,导致生活困难、致富困难,移民整体搬迁资金压力大。农民往往把水稻种植作为满足生活的单一作物,增收困难。不少农村集体经济收入来源不多,有的是零收入的空壳村。农村通村公路大部分是10年前修建的3.5米宽水泥路,路面狭小、弯道多。全区人均耕地仅0.46亩,导致绿色贫困现象突出。
4.病情评估 为重性精神病患者建档,重性精神病患者在纳入管理的时候,由上级专管部门及专业机构进行一次全面评估,检查患者的精神症状和躯体疾病,为符合诊断的患者建立健康档案。建档登记的内容包括患者及监护人姓名和联系方式等基本情况,既往主要症状、生活和劳动能力,目前症状、服药依从性、自知力、社会功能情况、康复措施、总体评价及后续治疗康复意见等。 5.定期随访 对纳入管理的患者,每年至少随访4次,每次随访的主要目的是提供精神卫生、用药和家庭护理理念等方面的信息,督导患者服药,防止复发,及时发现疾病复发和加重的征兆,给予相应处臵或转诊,并进行危机干预。对病情不稳定的患者,在现用药的基础上按规定剂量范围内进行调整,必要时与原主管医生联系或转诊至上级专业机构进行诊治,对伴有躯体症状恶化或药物不良反应,应将患者转至上级专业机构处治。
二、抓节约、保指标 在明年的工作中,行政部必须与各部门充分沟通,出台详细制度,大力抓节约,天天抓,时时抓,日常工作中多进行监督、检查、改进,从“节流”的层面确保公司利润指标的达成。 三、狠抓安全生产 以现有的安全标准化管理平台为基础,多进行安全检查、多进行安全生产管理知识培训,注意隐患排查,提高员工安全生产意识,保证安全生产零事故率。
1.医疗质量 要在巩固前两年急诊管理年活动成果的基础上,结合等级医院复审整改工作,围绕“质量、安全、服务、价格”,狠抓内涵建设。要进一步加强急诊急救专业队伍的设置,进行急诊医学知识的学习,了解急诊急救在当前社会的重要性,稳进急诊急救队伍。完善急诊、入院、手术“绿色通道”使急诊服务及时、安全、便捷、有效。完善24小时急诊服务目录、急诊工作流程、管理文件资料、对各支持系统服务的规范。协调临床各科对急诊工作的配合。对大批量病员有分类管理的程序。立足使急诊留观病人于24小时内诊断明确、病情稳定后安全入院。加强上级医师急救指导,加强三级会诊,加强与其他专科的协作配合,使急诊危重患者的抢救成功率提高到98%以上。
1.建立直接领导关系市场部是负责公司信息网络建设与维护、信息收集处理工作的职能部门,接受营销副总经理的领导。市场部信息管理员与各区域市场开发助理之间是一种直接领导关系,即在信息网络建设、维护、信息处理、考核方面对市场开发助理直接进行指导和指挥,并承担信息网络工作的领导责任。
第七条 劳动保险和福利待遇乙方因生、老、病、伤、残、死,甲方按国家有关规定处理。甲方按照国家有关规定按期为乙方缴纳养老、医疗、失业、公积金等社会保障。甲方在生产经营状况良好的情况下,为乙方购买的商业保险,在保险期内,甲方有权变更或撤销险种。
1、先是要完善公司内审制度,20**年已对现行的内审制度进行了修改,20**年为使审计工作有标准可依,根据现有审计业务的类型,准备建立《公司内部控制制度审计办法》、《公司合同管理审计办法》、《内部审计档案管理办法》、《委托社会审计管理办法》四项内审制度。 2、内部控制制度是指公司为实现经营目标,保障资产完整,保证会计信息真实、促进经济活动健康有序进行而制定的一种内部协调、组织、制约、检查的控制系统,包括对与会计记录、会计业务处理直接有关的会计控制系统和间接有关的管理控制系统。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。