一、教材分析行星的运动选自人教版普通高中物理必修2第六章第1节。本节教学既是前面《运动的描述》和《曲线运动》内容的进一步的延伸和拓展,又能为后面学习万有引力定律做铺垫。在本章中占有较为重要的地位,具有承前启后的作用。同时该节内容也涉及大量物理史实、贴近学生生活和联系社会实际的事实,可进一步培育学生的科学情感、精神和发展观。(一)教学目标 1.知识与技能(1)知道地心说和日心说的基本内容。(2.)掌握理解开普勒三大定律的内容,并能应用。(3)理解人们对行星运动的认识过程是漫长复杂的,真理是来之不易的。2.过程与方法通过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解。3.情感、态度与价值观(1)澄清对天体运动神秘、模糊的认识,掌握人类认识自然规律的科学方法。(2)感悟科学是人类进步不竭的动力。
了解了第一宇宙速度及其意义之后,继续提出问题,让学生思考:如果卫星的发射速度大于第一宇宙速度7.9km/s ,会出现什么情况呢?先让学生们大胆猜想,然后再向学生们介绍 卫星发射速度大于第一宇宙速度后的几种可能情况,引出第二宇宙速度和第三宇宙速度,让学生对第二、第三宇宙速度及其意义做定性了解。并通过演示Flash课件,帮助学生理解、加深学生印象。在学生对人造卫星的原理及发射卫星的速度条件有了初步了解后,接下来引导学生对卫星的运动规律作进一步的探索。实际上卫星并不是沿地表水平发射的,而是用火箭多次加速送到一定的高度的轨道后,再沿以地心为圆心的圆周的切线运行的。让学生继续深入思考:卫星在不同高度绕地球运行时的速度怎么求呢?将卫星送入低轨道和高轨道所需的速度都一样么?如果把不同轨道上的卫星绕地球的运动都看成是匀速圆周运动,引导学生利用已学的万有引力和圆周运动的相关知识,探究卫星绕地球的运行规律。
设计意图:通过设疑、讨论及学生的亲身体验与教师的引导,得到描述圆周运动快慢的两个物理量,也就成功的打破了学生在认识上的思维障碍,突破了物理概念教学的难点。在解决线速度和角速度的问题之后,我将引领学生学习匀速圆周运动的概念以及匀速圆周运动中线速度、角速度的特点。并引出匀速圆周运动中周期、转速的知识。为了加深学生对线速度、角速度与半径关系的认识,我设计了第三个学生体验活动:四名学生以我为圆心做圆周运动,四名学生始终并列,这时里圈同学走动不急不慢,而外圈同学则要小跑。通过学生的活动,不难发现在角速度相同的情况下,半径越大的线速度也越大。定性的得到了线速度、角速度与半径的关系。接下来让学生利用所学知识推导线速度、角速度与半径的关系。设计意图:这样就通过设疑、学生猜想、体验、推导的方式得到了结论,突破了本节课的难点即线速度、角速度与半径的关系。
(四)、弹性势能(据课时情况,可以让学生自学)生活中还有一些物体既没有运动也没有很大的高度却同样“储存”着能量,哪怕它只是孩童手里的玩具(图片:弹弓)。张紧的弓一撒手就会对箭支做功改变它的动能,松弛的弓有这样的本领吗?同样是弓前者具有能量而后者没有,那么什么情况下物体才具有这种能量呢?张紧的弓在恢复原状的过程会对外做功,但是拉断的弓还能有做功的本领吗?1.定义:物体由于发生弹性形变而具有的能量叫做弹性势能。2.弹性势能的大小与哪些因素有关呢?3、势能由相互作用的物体的相对位置决定的能量。重力势能:由地球和物体间相对位置决定。弹性势能:由发生形变的各部分的相对位置决定。(五).反馈练习1. 物体在运动过程中,克服重力做功50J, 则( )A.重力做功为50JB.物体的重力势能一定增加50JC.物体的重力势能一定减少50JD.重力做功为-50J
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
这本书平凡的事情中又突出不凡的人格!我的心也跟着人物的故事经历不安的躁动起来。有担当的孙少平、勤劳的孙少安、贤惠的秀莲、懂事的兰香、二流子王满银、舍己救人的王世宽、精明的金俊武、自私又泼辣的高银花、恶贯满盈的胡永州、走上犯罪道路的金富……里面的人物性格刻画十分鲜明,也有一两个因世俗的偏见和社会的封建走向悲剧的爱情故事,全书大致以孙家由衰转盛为主线。面对世俗的偏见,社会的封建以及命运的不公,这些人物也会奋起反抗
甲方、乙方均为合法注册经营的有限公司,丙方是具有完全民事行为能力的自然人。甲方的产品需要通过网络主播(新媒体)直播推广的方式进行销售,乙方具有优质的网络主播资源,丙方系乙方签约主播,并具有开展网络直播所需要的才艺和经验,为各展其长,三方在平等资源、互惠互利的基础上,依据《中华人民共和国民法典》相关规定,就丙方为甲方直播推广销售产品相关事务,达成本合同以资共同信守。
2、晚自习,教师不得讲课,应让学生自习,吃“自助餐”(以理科为主,高中文科除外)。作业做错的,应更正作业,教师给他批改,并作必要的辅导;优秀学生可看课外书籍、预习明天的功课或练习竞赛一类的拔高题;必要时,文科老师也可与个别学生接触,作短时间的辅导。 3、中午(至下午上课前),教师不得讲课,可以让学生更正上午做错的作业,优秀学生可以自由活动(可以进阅览室看书)。
五月的时光在不知不觉间流逝,六月的阳光将照耀在我们的脸上。天真的笑脸,欢快的笑声,明天我们将迎来六一国际儿童节。 目前,各国政府普遍关注儿童的未来,保护儿童的权益。联合国1990年通过的《儿童权利公约》,我国是参与制定国和签约国之一。在批准《儿童权利公约》的同一年,我国颁布了《中华人民共和国未成年人保护法》,这对维护少年儿童的权益起到了积极的作用。“六一”是我们最快乐的节日,因为: 我们是家庭的宝贝,更是家庭的希望。你们能够快乐地成长,家庭就充满欢歌与笑语。我们是学校的学生,更是学校的希望。我们能够全面地发展,学校就充满生机与活力。我们是社会的未来,更是社会的希望。我们能够和谐地发展,社会就充满热情与友爱。
老师们,同学们,大家好!我是××班的××,今天,非常荣幸站在国旗下,发表我的观点,我要讲话的主题是:“独立”与“合作”。大家都很熟悉《众人划桨开大船》这首歌吧,其中有一句歌词是这样写的:“一支竹篙,难渡汪洋海;众人划桨,开动大帆船。”这首歌就很形象的告诉了我们:在需要“合作”的时候,就不能“独立”,当然反过来说,我们也可以理解,在需要“独立”的时候,就应当独立起来,要想成为一名优秀的学生,就应当真正处理好独立学习与合作学习的关系。在我们进入学校的时候,老师就一再跟我们强调,在学习当中,我们首先应该学会“独立”:独立选择,独立思考,独立领悟,最后独立解决问题。这也正体现了“独立”的价值。独立是必须的,但是每当在学习上碰到了困难,遇到了让你解决不了的问题,这个时候就要放弃独立,学会合作,要与同学的合作、与老师的合作:讨论、倾听、解答,这是在解决问题中行之有效的方法。合作,可以共同解决疑问,共享学习成果,促进我们思维的发展。不只在学习中,其实娱乐当中,在生活当中,也需要有“独立”与“合作”的表现。就拿上次校运会中的接力赛来说吧,在这个比赛项目中,我们班取得了令人可喜的好成绩。比赛场上,50位同学要各自独立地完成好自己的赛程。在自己所拥有的这段赛程上,定要竭尽全力地发挥出自己的实力,在数千人面前好好表现自己。
甲方:法定代表人:地址:乙方:身份证号: 联系地址:鉴于:甲方具备媒体营销能力以及丰富的推广艺人直播、组织宣传等活动资源和能力;乙方具有电商直播方面的特长,且认同甲方理念,双方为共同实现在各大电商直播平台共同发展、共同获益的目的,达成以下一致意见。一、合作内容1、甲乙双方签订合约,乙方即视为甲方的签约艺人,甲方即视为乙方唯一的独家经纪公司。甲乙双方达成共识共同发展、共同获益,乙方与全网电商带货直播平台拼多多建立如下合作内容:、乙方拼多多、淘宝、京东、抖音等账号同意绑定甲方公司旗下。、乙方月直播有效天数不得低于 20 天,不得低于时长 60 个小时,新人试播一周( 7 天),一周内全部收益归乙方所有,试播结束按协定比例进行甲乙收益分配。、甲方将为乙方寻找直播带货商务合作资源,并协助乙方在直播平台上获得商业化变现收益,合作内容包括但不限于直播带货、视频广告、视频制作及发布等。、若甲乙双方就客户资源达成合作后,乙方按照甲方及客户要求完成直播带货需求。
根据《中华人民共和国合同法》和工程的具体情况,本着公平、合理、互惠互利的原则和诚实守信的精神,为明确甲乙双方的权利、义务的经济责任,甲方将 公司开发的 小区中的阳台锌钢栏杆、屋面锌钢栏杆制作与安装工程承包给乙方施工,经与乙方协商一致签订如下协议。一、 订购产品名称:内卡组合式锌钢栏杆二、 样式及颜色: 按“黑烤漆”确认的样品为准。三、 工程地点: 四、 安装数量: 阳台栏杆1~11#楼约5000米,屋面栏杆1~11#楼约1000米。结算时按实际安装栏杆面管长度计算。五、 工期要求:根据甲方要求,以单栋交付给乙方(有工作面)15天内栏杆安装完工,每延迟一天罚款500元。六、 质量及技术要求:1、本合同所指栏杆系列均以内卡组合式加工而成,阳台栏杆高度为110cm,屋面栏杆高度为110cm。2、阳台栏杆材料要求:面管为30×60面包管,厚度1.2㎜;立柱为 40×40,厚度1.2㎜;横管为 32×32,厚度为0.8㎜;竖管为:19×19,厚度为0.8㎜,单价 元/米(含发票)。(材料以样品为准)
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
师:改革开放后,乔家依然是生意兴隆,财源广进。下面我们来看一下他们乘坐另一种交通工具。(画外音响起,男中音用缓慢、低沉的语调朗诵;幻灯片展示)(七)乔致庸1905年来到上海,腰缠万贯的他坐上了行驶在柏油公路上的“四轮子”。可惜的是,此后的四十年,中国也没有多少柏油路和“四轮子”.直到50年后,四轮子和“柏油路”才多了起来。“四轮子”是什么?为什么“此后的四十年,中国也没有多少柏油路和四轮子”?为什么“直到50年后,四轮子和“柏油路”才多了起来”?生:略师:20世纪初,汽车开始出现在上海。因为旧中国政治腐败、民生凋敝。新中国成立后有了自己的汽车制造厂,比如说一汽、二汽。解放后,我们的汽车产业蒸蒸日上。(展示材料)屏幕显示:1956年,长春第一汽车制造厂生产出第一批 “解放牌”载重汽车,标志着中国汽车工业的诞生。2009年我国汽车工业取得了全球瞩目的成绩,首次超过美国,成为全球产销量第一的国家。
们学校是一个各民族学生与老师和谐相处的大家园。学校有维吾尔族,哈萨克族,柯尔克孜族,回族,蒙古族等多个民族的同学。学校在学习生活方面也给予少数民族同学很多的关心,而我们也就应用一种团结、友爱的态度来对待学校里的每一位少数民族同学。只有关系的和谐才能创造出一个充满生机和活力的新校园。 无论从哪一方面说,和谐都是发展的前提。09年的“7?5”事件使生活在xx的我们更加体会到稳定的重要性。如果没有了团结我们很有可能成为那个近代任人宰割的中国,实现中国的伟大复兴就会成为空谈,变成一个遥遥无期的梦想。应对国内外严峻的形势,我们更应做到团结,用一种全新的姿态应对世界!居安思危能使我们防患于未然,能让我们见证一个蒸蒸日上的新家园!
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。