(一)复习导入 师:什么是体积?生:物体所占空间的大小是物体的体积。师:怎样求长方体和正方体的体积?生:长方体的体积=底面积×高 正方体的体积=底面积×高师:圆的面积计算公式是怎样推导出来的?课件出示:生:把圆转化成长方形,长方形的长等于圆柱底面周长的一半,宽等于半径,所以圆的面积:S = πr2猜测:把圆柱转化成什么立体图形来推导圆柱的体积公式呢?呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
(一)复习旧知,导入新课。师:同学们,上节课我们认识了体积和体积单位,请你填一填这两道题,看看你学得怎么样。(课件第2张)1.常用的体积单位有(立方厘米)、(立方分米)、(立方米),可以分别写成(cm³) 、(dm³)、 (m³)。2.棱长是1cm的正方体,体积是(1cm³)。3.棱长是1dm的正方体,体积是(1dm³)。4.棱长是1m的正方体,体积是(1m³)。【设计意图】1dm³是多少cm³呢?这节课我们就来研究一下体积单位间的进率。(板书课题)(二)探究新知1.探究立方分米和立方厘米间的进率:(课件第3张)(1)下图是一个棱长为1dm的正方体,体积是1dm³。想一想,它的体积是多少立方厘米呢?(2)小组讨论,你是怎样想的?(3)汇报交流:(课件第4张)生1:如果把它的棱长看作是10cm,可以把它切成1000块1cm³的小正方体。10×10×10=1000.生2:它的底面积是1dm²,就是100cm²,100×10=1000,一共是1000cm³。1dm³=1000cm³【设计意图】用小组讨论的方式,让学生从讨论的过程中找到解决问题的方法,培养学生的语言表达能力、思维能力。2.你知道1m³等于多少立方分米吗?(课件第5张)生1:把棱长是1m的正方体,看作棱长是10dm的正方体,10×10×10=1000dm³。1m³=1000dm³。 生2:棱长是1m的正方体,底面积是1m²,就是100dm²,100×10=1000dm³,一共是1000dm³。生3:1m³=1000dm³ 3.整理计量单位之间的进率。(1)小组讨论:到现在为止,我们已经学习了哪些计量单位?请整理在表中。
因此,我从学生已有的生活出发,寻找例子,帮助学生理解容积的概念。同时也多次提供了实践机会,让学生自己操作实验的过程,在操作中感知1升、1毫升的大小和容积单位和体积单位之间的关系。二、说教学目标1、理解容积的概念,认识常用的容积单位,感知1升和1毫升的实际大小,并掌握容积单位、体积单位间的进率。2、通过实验的方法,使学生经历探究容积单位、容积单位和体积单位之间的关系的过程。三、教学重难点:1、建立容积和容积单位概念,知道容积单位和体积单位的关系。2、会计算容积。四、说教法为了使课堂的主人能活跃起来,我用了自主探究式发现问题、谈论交流和实验教学的方法进行教学,从而也激发了学生的积极性和主动性。五、说学法:更多的是引导学生在自主尝试、观察、讨论和探究中获取知识。
(一)观图激趣、设疑导入 出示课件的第一张幻灯片。1、谈话导入(PPT课件出示脑筋急转弯)。师:同学们,老师这里有一个脑筋急转弯,一起来猜一猜把!生1:因为蚂蚁是在地图上爬过去的。2、揭示课题。师:同学们可真聪明!是的,地图上的距离是按一定的比把实际的距离缩小了画在图纸上的。今天我们就来研究这个问题:比例尺。(板书课题)【设计意图】运用学生熟悉的现象导入,给学生带来的是愉快的心情和积极的学习态度,顺其自然进入学习状态,达到导入的目的。(二)探究新知教学比例尺的意义及种类,理解比例尺的含义以及关系式。1、阅读教材第53页关于比例尺的内容。师:阅读教材后,汇报你知道了哪些关于比例尺的知识。生1:通过阅读我知道:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。图上距离∶实际距离=比例尺。(板书比例尺的意义)=比例尺生2:比例尺是绘图时用的,它是把实际距离按一定的比缩小或扩大,再画在图纸上。生3:教材介绍说,地图上的比例尺有1∶100000000,这是数值比例尺,它也可以写成这种形式,也叫数值比例尺。(板书)生4:老师,我看见这样表示比例尺的: 师:这叫线段比例尺。 它表示的是:图上1厘米的距离相当于地面上50 km的实际距离。(板书)生5:我会把上面的线段比例尺改成数值比例尺。图上距离∶实际距离。=1 cm∶50 km=1 cm∶5000000 cm(单位要相同)=1∶5000000(板书过程)生6:比例尺1∶5000000表示图上距离是实际距离的。实际距离是图上距离的5000000倍。
1.教学内容 《圆柱的体积》是人教版小学数学第十二册第三单元的内容,它包括圆柱体的体积计算公式的推导和运用公式计算体积。2.本节课在教材中所处的地位和作用本节课是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。3.教材的重点和难点圆柱体积的计算是本节课的教学重点。圆柱体积公式的推导过程是本节课的难点。弄清楚圆柱与转化后的近似长方体之间的关系是教学的关键。4.教学目标 知识与技能目标:经历认识圆柱体积、探索圆柱体积计算公式及简单应用的过程;探索并掌握圆柱体积公式;能计算圆柱的体积。情感与态度目标:在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。
2.过程与方法 培养学生的应用意识和实践能力,使学生感受数学在生活中的作用。3.情感态度与价值观结合实际对学生进行思想品德教育,鼓励学生节约用钱,支援贫困地区的失学儿童。 【教学重点】 理解本金、利率和利息的含义正确地计算利息。 【教学难点】 正确地计算利息。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】 多媒体课件【课时安排】 1课时【教学过程】(一)复习导入 1. 师:同学们,你们到银行存钱或取过钱吗?(课件第2张)人们为什么要把钱存入银行呢?生1:人们常常把暂时不用的钱存入银行储蓄起来。(课件第3张)生2:储蓄不仅可以支援国家建设,也使得个人钱财更安全,还可以增加一些收入。2.师:这节课我们就走进银行,来来学习“利率”的知识。(板书课题:利率)
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
一、说教材分析《真理诞生于一百个问号之后》是第五单元的一篇精读课文,也是一篇议论文。文题“真理诞生于一百个问号之后”也是课文的主要观点。全文结构清晰:第1自然段开门见山,提出观点,明确指出:“真理诞生于一百个问号之后”本身就是“真理”。主体部分(2—8自然段)引用科学发展史上的三个有代表性的事例(谢皮罗教授从洗澡水的漩涡中发现问题,通过反复试验和研究,发现水的漩涡的旋转方向和地球的自转有关;德国地质学家魏格纳从蚯蚓的分布,推论地球上大陆与海洋的形成;奥地利医生从儿子做梦时眼珠转动这个现象,经过反复观察和分析,推断出凡睡者眼珠转动时都表示在做梦),论述了只要善于观察,不断发问,不断解决疑问,锲而不舍地追根求源,就能在现实生活中发现真理。第三部分(9、10自然段)总结全文,重申观点。指出科学并不神秘,也不遥远,关键在于“知微见著”,不断探索,善于独立思考,具有锲而不舍的精神。
一、教材分析用乘法口诀求商是数学计算中的一块重要基石,它在整个计算领域中起着举足轻重的作用。为了让学生掌握好这部分知识,教材根据儿童的认知规律将用乘法口诀求商分为两阶段学习。第一阶段,安排在本册书的第二单元表内除法一:学习“用2~6的乘法口诀求商”,该单元着重让学生掌握求商的一般方法。第二阶段,安排在本册书的第四单元表内除法二:学习“用7、8、9的乘法口诀求商”,本单元着重让学生在熟练掌握用口诀求商一般方法的基础上,综合运用表内乘除法的计算技能解决一些简单的涉及乘,除运算的实际问题。“用7、8的乘法口诀求商” 即是本单元的第一课时,也是在学习“用2~6的乘法口诀求商”的基础上进行教学的。本节课中,教材通过一幅学生熟悉的“欢乐的节日”的主题图,引出要用除法计算的实际问题。通过解决具体问题,使学生体会求商的计算是解决问题的需要,用乘法口诀求商是帮助人们解决实际问题的工具,因此学好这部分知识是非常重要的。
1、课题引入:11月16日9时40分许,甘肃庆阳市正宁县榆林子镇发生一起重大交通事故,“校车安全”又一次甚嚣尘上,我设计提问“校车安全事故然表面是偶然,但又是一种必然,你认为事件的原因何在?”的问题激发学生的阅读兴趣。我设计典型事例,通过学生讨论,教师总结的形式,并得出主次矛盾辩证关系的原理分析。2、具体分析事件背后的原因,从原因中发现,这众多的原因矛盾中,都有主次方面之分,由于得出矛盾的主次方面原理。3、从原因中,寻找对策,既坚持重点论与两点论的结合。反对一点论和均衡论。4、无独有偶,在2011年在湖南,海南,广西等地均有类似的事件发生。对比各地事故背后的原因,得出应具体问题具体分析。进而分析具体问题具体分析的意义及地位。
1、知识技能目标:掌握一次函数的定义及其解析式的特点、知道一次函数与正比例函数关系、会利用一次函数解决简单的数学问题。2、过程与方法目标: 通过实际问题引出一次函数概念,发展学生探究能力、在教学过程中,让学生学会由具体到抽象,从特殊到一般的数学思想。 3、情感态度与价值观目标: 通过“登山问题”的研究,体会建立函数模型的思想、通过本节课的学习,向学生渗透数学来源于实践生活又反过来作用于实践生活的观念。
我是快乐的挑战者,我试试,我能行!遇困难,我不怕!来挑战,会选择!我挑战,我成功!出示任务:全班挑战诵读儿歌。反馈指导:1.学生一人挑战诵读儿歌。2.全班同学挑战打着节拍诵读儿歌。3.赠送秘籍:信心、勇气、智慧。(张贴)活动四:计划书写,情感升华导语:那么现在请大家带着这份秘籍,写下你下一个想尝试的事情吧!出示任务:学生写下还想尝试的事情,并指定一两名学生说出自己的挑战内容。反馈指导:1.写出自己想尝试的事情。2.汇报分享自己想尝试的事情。小结:同学们,面对挑战,我们需要一点信心,需要一点勇气,还需要一点智慧,那么,请带着智慧、勇气、信心,完成你们的下一次挑战吧!预祝大家挑战成功!六、浓缩文本,说板书根据二年级的年龄特点,本课板书以图画的形式呈现,能吸引学生的注意力,内容简单明了,重难点突出。
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》的第五章的4.5.3函数模型的应用。函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价,发展学生数学建模、数学直观、数学抽象、逻辑推理的核心素养。1. 能建立函数模型解决实际问题.2.了解拟合函数模型并解决实际问题.3.通过本节内容的学习,使学生认识函数模型的作用,提高学生数学建模,数据分析的能力. a.数学抽象:由实际问题建立函数模型;b.逻辑推理:选择合适的函数模型;c.数学运算:运用函数模型解决实际问题;
2、能在活动中培养自己的观察力以及初步的空间想象力。 3、使在探索活动中提高对认识立体图体的兴趣。 活动准备: 正方体、长方体制作材料纸若干张,正方体、长方体积木若干块。 活动过程: 1、集体活动。 观察两张制作材料,讲述异同。“小朋友看老师带来了两张纸,请你仔细观察它们有什么相同的地方和不同的地方?(相同点:都有6个图形组成。不同点:一张纸上都是一样大的正方形组成。还有一张纸上有正方形和长方形组成。) 2、幼儿操作活动。 “今天老师就要请小朋友用这两张纸来变魔术,怎么做呢?” (1)介绍制作形体的方法。 出示示意图,教师简单讲述制作方法。
中班科学活动《吹泡泡》就是我用巧妙的方法引导幼儿生成和建构的新主题。在一次区域游戏中许多幼儿兴趣都集中在“吹泡泡”角,幼儿你一言我一句的说“为什么泡泡有的会飞、有的好破、有大有小……”等等,由于幼儿受到无意注意和表象性思维等特点的左右,对泡泡的探索缺乏深度。所以,在幼儿“玩”的过程中,我以玩伴的身份参与到幼儿的活动中,借助“你们发现吹的泡泡有什么秘密”这个开放性的问题,与幼儿有效地互动自然生成了这个主题。目的在于保持幼儿们的好奇心,激发他们的探究热情,使他们从小就善于观察和发现;从而感觉到“科学并不遥远,科学就在身边”。让幼儿们真正理解科学、热爱科学,达到真正有价值、有意义的学习目的。 活动目标: 1、运用各种感官感知泡泡的特性,了解不同形状的工具吹出的泡泡都是圆的。 2、让孩子正确使用吹泡泡的方式 3、在探究活动过程中体验发现的乐趣。活动准备: 1、教师收集的各种形状的吹泡泡工具:圆形,三角形、正方形、一次性杯子若干。 2、视频课件
6. 例二:如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上的一点,且PA=AC,求二面角P-BC-A的大小. 解:由已知PA⊥平面ABC,BC在平面ABC内∴PA⊥BC∵AB是⊙O的直径,且点C在圆周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC内,∴BC⊥平面PAC又PC在平面PAC内,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定义一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直,平面α与β垂直,记作α⊥β8. 探究:建筑工人在砌墙时,常用铅锤来检测所砌的墙面与地面是否垂直,如果系有铅锤的细绳紧贴墙面,工人师傅被认为墙面垂直于地面,否则他就认为墙面不垂直于地面,这种方法说明了什么道理?
1.探究:根据基本事实的推论2,3,过两条平行直线或两条相交直线,有且只有一个平面,由此可以想到,如果一个平面内有两条相交或平行直线都与另一个平面平行,是否就能使这两个平面平行?如图(1),a和b分别是矩形硬纸板的两条对边所在直线,它们都和桌面平行,那么硬纸板和桌面平行吗?如图(2),c和d分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺与桌面平行吗?2.如果一个平面内有两条平行直线与另一个平面平行,这两个平面不一定平行。我们借助长方体模型来说明。如图,在平面A’ADD’内画一条与AA’平行的直线EF,显然AA’与EF都平行于平面DD’CC’,但这两条平行直线所在平面AA’DD’与平面DD’CC’相交。3.如果一个平面内有两条相交直线与另一个平面平行,这两个平面是平行的,如图,平面ABCD内两条相交直线A’C’,B’D’平行。
【交流点拨】 首联:点题。“青山”指北固山。诗人在船上,想象船到镇江后,还要乘驿车到别处,暗含旅途奔波之意。 颔联:写船上所见景色。“平”“阔”“正”“悬”四字用得好:“潮平”,两岸才显得宽阔;“风正”,帆才有悬空的态势。“潮平”句,又是为颈联中“江春”句作铺垫。 颈联:既写景又点明了时令。“残夜”指夜将尽而未尽之际。残夜而东方海日已升,旧年而江上已是春天——时间过得这么快,怎能不令人感慨! 尾联:诗人离家日久,日复一日,年复一年,新年来到,正是家人团聚之时,而自己旅途他乡,久不得归,见到此景,情何以堪?由此他自然想到要借大雁来给他传递家书了。全诗陈陈相因,浑然一体。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。