提供各类精美PPT模板下载
当前位置:首页 > Word模板 > 教育教学 > 课件教案> 人教A版高中数学必修一函数模型的应用教学设计(1)
  • 收藏模板
    下载模板
  • 模板信息
  • 更新时间:2023-10-21
  • 字数:约7136字
  • 页数:约13页
  • 格式:.docx
  • 推荐版本:Office2016及以上版本
  • 售价:5 金币 / 会员免费

您可能喜欢的文档

  • 人教A版高中数学必修一函数模型的应用教学设计(2)

    人教A版高中数学必修一函数模型的应用教学设计(2)

    本节通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.数学学科素养1.数学抽象:建立函数模型,把实际应用问题转化为数学问题;2.逻辑推理:通过数据分析,确定合适的函数模型;3.数学运算:解答数学问题,求得结果;4.数据分析:把数学结果转译成具体问题的结论,做出解答;5.数学建模:借助函数模型,利用函数的思想解决现实生活中的实际问题.重点:利用函数模型解决实际问题;难点:数模型的构造与对数据的处理.

  • 人教A版高中数学必修一函数的应用(一)教学设计(2)

    人教A版高中数学必修一函数的应用(一)教学设计(2)

    客观世界中的各种各样的运动变化现象均可表现为变量间的对应关系,这种关系常常可用函数模型来描述,并且通过研究函数模型就可以把我相应的运动变化规律.课程目标1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题; 2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性. 数学学科素养1.数学抽象:总结函数模型; 2.逻辑推理:找出简单实际问题中的函数关系式,根据题干信息写出分段函数; 3.数学运算:结合函数图象或其单调性来求最值. ; 4.数据分析:二次函数通过对称轴和定义域区间求最优问题; 5.数学建模:在具体问题情境中,运用数形结合思想,将自然语言用数学表达式表示出来。 重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题;难点:运用函数思想理解和处理现实生活和社会中的简单问题.

  • 人教A版高中数学必修一函数的概念教学设计(2)

    人教A版高中数学必修一函数的概念教学设计(2)

    函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。

  • 人教版高中数学选修3一元线性回归模型及其应用教学设计

    人教版高中数学选修3一元线性回归模型及其应用教学设计

    1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).

  • 人教A版高中数学必修一三角函数的应用教学设计(2)

    人教A版高中数学必修一三角函数的应用教学设计(2)

    本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力.课程目标1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型. 数学学科素养1.逻辑抽象:实际问题抽象为三角函数模型问题;2.数据分析:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型; 3.数学运算:实际问题求解; 4.数学建模:体验一些具有周期性变化规律的实际问题的数学建模思想,提高学生的建模、分析问题、数形结合、抽象概括等能力.

  • 查看更多相关Word文档

函数模型的应用教学设计(1)

本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》的第五章的4.5.3函数模型的应用。函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。

课件教案

本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价,发展学生数学建模、数学直观、数学抽象、逻辑推理的核心素养。

课程目标

学科素养

1.能建立函数模型解决实际问题.

2.了解拟合函数模型并解决实际问题.

3.通过本节内容的学习,使学生认识函数模型的作用,提高学生数学建模,数据分析的能力.

a.数学抽象:由实际问题建立函数模型;

b.逻辑推理:选择合适的函数模型;

c.数学运算:运用函数模型解决实际问题;

d.直观想象:运用函数图像分析问题;

e.数学建模:由实际问题建立函模型;

f.数据分析:通过数据分析对应的函数模型;

教学重点:利用给定的函数模型或建立确定性函数模型解决实际问题.

教学难点: 利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进行简单的分析评价.

多媒体

学过程

设计意图

核心教学素养目标

(一)创设问题情境

1.常见函数模型

常用函数模型

(1)一次函数模型

y=kx+b(k,b为常数,k≠0)

(2)二次函数模拟

y=ax2+bx+c(a,b,c为常数,a≠0)

(3)指数函数模型

y=bax+c(a,b,c为常数,b≠0,a>0且a≠1)

(4)对数函数模型

y=mlogax+n(m,a,n为常数,m≠0,a>0且a≠1)

(5)幂函数模型

y=axn+b(a,b为常数,a≠0)

2.建立函数模型解决问题的基本过程

(二)问题探究

我们知道 , 函数是描述客观世界变化规律的数学模型 , 不同的变化规律需要用不同的函数模型来刻画 . 面临一个实际问题 , 该如何选择恰当的函数模型来刻画它呢?

典例解析

例3.人口问题是当今世界各国普遍关注的问题 . 认识人口数量的变化规律 , 可以为制定一系列相关政策提供依据 . 早在 1978 年 , 英国经济学家马尔萨斯 ( T.R.Malthas ,1766 — 1834) 就提出了自然状态下的人口增长模型 ,其中 t 表示经过的时间 , 表示 t=0 时的人口数 , r 表示人口的年平均增长率 .下表 是 1950~1959 年我国的人口数据资料

(1) 如果以各年人口增长率的平均值作为我国这一时期的人口增长率 ( 精确到 0.0001),

用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型 , 并检验所得模型与实

际人口数据是否相符 ;

(2) 如果按上表 的增长趋势 , 那么大约在哪一年我国的人口数达到 13 亿?

分析 : 用马尔萨斯人口增长模型建立具体人口增长模型 , 就是要确定其中的初始量

和年平均增长率 r.

解 :( 1) 设1951~1959 年我国各年的人口增长率分别为 ,… . 由

可得 1951年的人口增长率 ≈0.0200.

同理可得 , ≈0.0210, ≈0.0229 , ≈0.0250, ≈0.0197 ,≈0.0223,≈0.0276,≈0.0222,≈0.0154.

于是 , 1951~1959 年期间 , 我国人口的年平均增长率为:令 =55196, 则我国在 1950~1959年期间的人口增长模型为,t ∈N.

根据表 中的数据画出散点图 , 并画出函数 (t ∈N )

的图象 由图 可以看出 , 所得模型与 1950~1959 年的实际人口数据基本吻合 .

事实上 , 我国 1989年的人口数为 11.27亿 , 直到 2005年才突破13 亿 . 对由

函数模型所得的结果与实际情况不符 , 你有何看法 ?

因为人口基数较大 , 人口增长过快 , 与我国经济发展水平产生了较大矛盾 , 所以我国从 20 世纪 70 年代逐步实施了计划生育政策 . 因此这一阶段的人口增长条件并不符合马尔萨斯人口增长模型的条件 , 自然就出现了依模型得到的结果

与实际不符的情况 .

例4. 2010年 ,考古学家对良渚古城水利系统中一条水坝的建筑材料上提取的草茎遗存进行碳 14年代学检测 ,检测出碳 14的残留量约为初始量的 55.2% , 能否以此推断此水坝大概是什么年代建成的?

分析 : 因为死亡生物机体内碳 14 的初始量按确定的衰减率衰减 , 属于指数衰减 , 所以应选择函数( ∈R , 且 ≠0 ; >0 , 且 ≠1 ) 建立数学模型 .

解 : 设样本中碳 14 的初始量为 , 衰减率为 ( 0< <1), 经过 年后 残余量为 . 根据问题的实际意义 ,

可选择如下模型 :(∈R , 且 ≠0 ; 0< <1 ;≥0 ) .由碳 14 的半衰期为 5730年 , 得=,于是 ,所以

由样本中碳14 的残余量约为初始量的 55.2% 可知 ,即 0.552k ,解得 .由计算工具得 ≈4912.

因为 2010年之前的 4912年是公元前 2902年 ,

所以推断此水坝大概是公元前 2902年建成的 .

归纳总结

[规律方法] 已知函数模型解决实际问题,往往给出的函数解析式含有参数,需要将题中的数据代入函数模型,求得函数模型中的参数,再将问题转化为已知函数解析式求函数值或自变量的值

典例解析

例5.假设你有一笔资金用于投资 , 现有三种投资方案供你选择 , 这三种方案的回报如下 :

方案一 : 每天回报40元 ;

方案二 : 第一天回报10元 , 以后每天比前一天多回报10元 ;

方案三 : 第一天回报0.4元 , 以后每天的回报比前一天翻一番 .

请问 , 你会选择哪种投资方案?

① 问题中涉及哪些数量关系?

投资天数、回报金额

② 如何用函数描述这些数量关系?

分析 : 我们可以先建立三种投资方案所对应的函数模型 , 再通过比较它们的增长情况 , 为选择投资方案提供依据

解 : 设第x天所得回报是y元 , 则方案一可以用函数 y =40 进行描述 ;

方案二可以用函数 y =10x进行描述 ;

方案三可以用函数

进行描述 . 三个模型中 , 第一个是常数函数 , 后两个都是增函数 .

要对三个方案作出选择 , 就要对它们的增长情况进行分析 .

我们先用信息技术计算一下三种方案所得回报的增长情况

三种方案每天回报表

方案一的函数是常数函

数 , 方案二 、 方案三的函数都是增函数 , 但方案三的函数与

方案二的函数的增长情况很不相同 . 可以看到 , 尽管方案一 、 方案二在第 1 天所得回报分别是方案三的100倍和25

倍 , 但它们的增长量固定不变 , 而方案三是 “ 指数增长 ”,

其 “ 增长量 ” 是成倍增加的 , 从第7天开始 , 方案三比其他两个方案增长得快得多 , 这种增长速度是方案一 、 方案二所无法企及的 . 从每天所得回报看 ,

在第 1~3 天 , 方案一最多 ;

在第 4 天 , 方案一和方案二一样多 , 方案三最少 ;

在第5~8 天 , 方案二最多 ; 第9天开始 , 方案三比其他两个方

案所得回报多得多 , 到第30天 , 所得回报已超过2亿元 .

下面再看累计的回报数 . 通过信息技术列表如下

投资1~6天,应选择方案一;

投资7天,应选择方案一或方案二;

投资8~10天,应选择方案二;

投资11天(含11天)以上,应选择方案三。

假如某公司每天给你投资1万元,共投资30天。公司要求你给他的回报是:第一天给公司1分钱,第二天给公司2分钱,以后每天给的钱都是前一天的2倍,共30天,你认为这样的交易对你有利吗?

解答如下:公司30天内为你的总投资为: 30万元

你30天内给公司的回报为:0.01+0.012+0.0122+…+0.01229=10737418.23≈1074(万元)

上述例子只是一种假想情况 , 但从中可以看到 , 不同的函数增长模型 , 增长变化存在很大差异

例6. 某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%。现有三个奖励模型:y=0.25x, y=log7x+1, y=1.002x,

其中哪个模型能符合公司的要求?

①例6涉及了哪几类函数模型?

一次函数,对数型函数,指数函数。

②你能用数学语言描述符合公司奖励方案的条件吗?

分析 : 本例提供了三个不同增长方式的奖励模型 , 按要求选择其中一个函数作为刻画

奖金总数与销售利润的关系 . 由于公司总的利润目标为 1000万元 , 所以销售人员的销售利润一般不会超过公司总的利润 . 于是 , 只需在区间 [10 ,1000 ] 上 , 寻找并验证所选函数是否满足两条要求 : 第一 , 奖金总数不超过 5 万元 , 即最大值不大于 5 ;

第二 , 奖金不超过利润的 25% , 即 Y≤0.25X .不妨先画出函数图象 ,通过观察函数图象 , 得到初步的结论 , 再通过具体计算 , 确认结果 .

解 : 借助信息技术画出函数 y =5 , y=0.25x, y=log7x+1, y=1.002x 的图象. 观察图象发现 , 在区间 [ 10, 1000] 上 , 模型 y=0.25x, y=1.002x的图象都有一部分在直线 y =5 的上方 , 只有模型 y=log7x+1的图象始终在 y=5 的下方 , 这说明只有按模型 y=log7x+1进行奖励时才符合公司的要求 .

下面通过计算确认上述判断 .

先计算哪个模型的奖金总数不超过 5 万元 .

对于模型 y =0.25x, 它在区间 [ 10,1000 ] 上单调递增 ,

而且当 x =20 时 , y =5 ,

因此 , 当 x >20 时 , y >5 , 所以该模型不符合要求 ;

对于模型, y=1.002x , 由函数图象 ,

并利用信息技术 , 可知在区间 (805 ,806 )

内有一个点 满足 =5 , 由于它在区间 [10 ,1000 ] 上单调递增 ,

因此当 x> 时 , y >5 ,所以该模型也不符合要求 ;

对于模型 y=log7x+1, 它在区间 [10 ,1000 ]上单调递增 , 而且当 x=1000 时 ,y=log71000+1≈4.55<5 , 所以它符合奖金总数不超过 5 万元的要求 .

再计算按模型 y=log7x+1奖励时 , 奖金是否不超过利润的25% ,

即当 x ∈[10 ,1000 ] 时 , 是否有 y ≤0.25x,

即y=log7x+1 ≤0.25x成立 .

令 f(x) = y=log7x+1-0.25x, x ∈ [10 ,1000 ], 利用信息技术画出它的图象

由图象可知函数 f(x)在区间[10 ,1000 ] 上单调递减 ,

因此f(x)≤ f(10)≈-0.3167<0 ,

即y=log7x+1<0.25x.所以 , 当 x ∈ [10 ,1000 ]时 ,

y ≤0.25x, 说明按模型y=log7x+1 奖励 , 奖金不会超过利润的 25%.综上所述 , 模型 y=log7x+1确实能符合公司要求 .

[规律方法]

自建模型时主要抓住四个关键:“求什么,设什么,列什么,限制什么”.

求什么就是弄清楚要解决什么问题,完成什么任务.

设什么就是弄清楚这个问题有哪些因素,谁是核心因素,通常设核心因素为自变量.

列什么就是把问题已知条件用所设变量表示出来,可以是方程、函数、不等式等.

限制什么主要是指自变量所应满足的限制条件,在实际问题中,除了要使函数式有意义外,还要考虑变量的实际含义,如人不能是半个等.

通过对常见函数模型的回顾,提出新的问题,提出运用函数模型分析解决实际问题,培养和发展数据分析、数学建模和数学抽象、直观想象的核心素养。

通过对具体问题的分析建模,解模的过程,发展学生数学建模、数据分析、逻辑推理,直观想象、数学抽象、数学运算等核心素养;

通过对具体问题的分析建模,解模的过程,发展学生数学建模、数据分析、逻辑推理,直观想象、数学抽象、数学运算等核心素养;


最新课件教案文档
  • 精选高中生期末评语

    精选高中生期末评语

    1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。

  • 公司2024第一季度意识形态工作联席会议总结

    公司2024第一季度意识形态工作联席会议总结

    一是要把好正确导向。严格落实主体责任,逐条逐项细化任务,层层传导压力。要抓实思想引领,把理论学习贯穿始终,全身心投入主题教育当中;把理论学习、调查研究、推动发展、检视整改等有机融合、一体推进;坚持学思用贯通、知信行统一,努力在以学铸魂、以学增智、以学正风、以学促干方面取得实实在在的成效。更加深刻领会到******主义思想的科学体系、核心要义、实践要求,进一步坚定了理想信念,锤炼了政治品格,增强了工作本领,要自觉运用的创新理论研究新情况、解决新问题,为西北矿业高质量发展作出贡献。二是要加强应急处事能力。认真组织开展好各类理论宣讲和文化活动,发挥好基层ys*t阵地作用,加强分析预警和应对处置能力,提高发现力、研判力、处置力,起到稳定和引导作用。要坚决唱响主旋律,为“打造陕甘片区高质量发展标杆矿井”、建设“七个一流”能源集团和“精优智特”新淄矿营造良好的舆论氛围。三是加强舆情的搜集及应对。加强职工群众热点问题的舆论引导,做好舆情的收集、分析和研判,把握时、度、效,重视网上和网下舆情应对。

  • 关于2024年上半年工作总结和下半年工作计划

    关于2024年上半年工作总结和下半年工作计划

    二是深耕意识形态。加强意识形态、网络舆论阵地建设和管理,把握重大时间节点,科学分析研判意识形态领域情况,旗帜鲜明反对和抵制各种错误观点,有效防范处置风险隐患。积极响应和高效落实上级党委的决策部署,确保执行不偏向、不变通、不走样。(二)全面深化党的组织建设,锻造坚强有力的基层党组织。一是提高基层党组织建设力量。压实党建责任,从政治高度检视分析党建工作短板弱项,有针对性提出改进工作的思路和办法。持续优化党建考核评价体系。二是纵深推进基层党建,打造坚强战斗堡垒。创新实施党建工作模式,继续打造党建品牌,抓实“五强五化”党组织创建,广泛开展党员教育学习活动,以实际行动推动党建工作和经营发展目标同向、部署同步、工作同力。三是加强高素质专业化党员队伍管理。配齐配强支部党务工作者,把党务工作岗位作为培养锻炼干部的重要平台。

  • XX区民政局党支部开展主题教育工作情况总结报告

    XX区民政局党支部开展主题教育工作情况总结报告

    二要专注于解决问题。根据市委促进经济转型的总要求,聚焦“四个经济”和“双中心”的建设,深入了解基层科技工作、学术交流、组织建设等方面的实际情况,全面了解群众的真实需求,解决相关问题,并针对科技工作中存在的问题,采取实际措施,推动问题的实际解决。三要专注于急难愁盼问题。优化“民声热线”,推动解决一系列基层民生问题,努力将“民声热线”打造成主题教育的关键工具和展示平台。目前,“民声热线”已回应了群众的8个政策问题,并成功解决其中7个问题,真正使人民群众感受到了实质性的变化和效果。接下来,我局将继续深入学习主题教育的精神,借鉴其他单位的优秀经验和方法,以更高的要求、更严格的纪律、更实际的措施和更好的成果,不断深化主题教育的实施,展现新的风貌和活力。

  • 交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言

    交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言

    今年3月,市政府出台《关于加快打造更具特色的“水运XX”的意见》,提出到2025年,“苏南运河全线达到准二级,实现2000吨级舶全天候畅行”。作为“水运XX”建设首战,谏壁闸一线闸扩容工程开工在即,但项目开工前还有许多实际问题亟需解决。结合“到一线去”专项行动,我们深入到谏壁闸一线,详细了解工程前期进展,实地察看谏壁闸周边环境和舶通航情况,不断完善施工设计方案。牢牢把握高质量发展这个首要任务,在学思践悟中开创建功之业,坚定扛起“走在前、挑大梁、多做贡献”的交通责任,奋力推动交通运输高质量发展持续走在前列。以学促干建新功,关键在推动高质量发展持续走在前列。新时代中国特色社会主义思想着重强调立足新发展阶段、贯彻新发展理念、构建新发展格局,推动高质量发展,提出了新发展阶段我国经济高质量发展要坚持的主线、重大战略目标、工作总基调和方法论等,深刻体现了这一思想的重要实践价值。

  • XX区文旅体局2023年工作总结 及2024年工作安排

    XX区文旅体局2023年工作总结 及2024年工作安排

    三、2024年工作计划一是完善基层公共文化服务管理标准化模式,持续在公共文化服务精准化上探索创新,围绕群众需求,不断调整公共文化服务内容和形式,提升群众满意度。推进乡镇(街道)“114861”工程和农村文化“121616”工程,加大已开展活动的上传力度,确保年度目标任务按时保质保量完成。服务“双减”政策,持续做好校外培训机构审批工作,结合我区工作实际和文旅资源优势,进一步丰富我市义务教育阶段学生“双减”后的课外文化生活,推动“双减”政策走深走实。二是结合文旅产业融合发展示范区,全力推进全域旅游示范区创建,严格按照《国家全域旅游示范区验收标准》要求,极推动旅游产品全域布局、旅游要素全域配置、旅游设施全域优化、旅游产业全域覆盖。

今日更新Word
  • 精选高中生期末评语

    精选高中生期末评语

    1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。

  • ××县招商局2024年上半年工作总结

    ××县招商局2024年上半年工作总结

    二是全力推进在谈项目落地。认真落实“首席服务官”责任制,切实做好上海中道易新材料有机硅复配硅油项目、海南中顾垃圾焚烧发电炉渣综合利用项目、天勤生物生物实验基地项目、恺德集团文旅康养产业项目、三一重能风力发电项目、中国供销集团冷链物流项目跟踪对接,协调解决项目落户过程中存在的困难和问题,力争早日实现成果转化。三是强化招商工作考核督办。持续加大全县招商引资工作统筹调度及业务指导,贯彻落实项目建设“6421”时限及“每月通报、季度排名、半年分析、年终奖励”相关要求,通过“比实绩、晒单子、亮数据、拼项目”,进一步营造“比学赶超”浓厚氛围,掀起招商引资和项目建设新热潮。四是持续优化园区企业服务。

  • “四零”承诺服务创建工作总结

    “四零”承诺服务创建工作总结

    (二)坚持问题导向,持续改进工作。要继续在提高工作效率和服务质量上下功夫,积极学习借鉴其他部门及xx关于“四零”承诺服务创建工作的先进经验,同时主动查找并着力解决困扰企业和群众办事创业的难点问题。要进一步探索创新,继续优化工作流程,精简审批程序,缩短办事路径,压缩办理时限,深化政务公开,努力为企业当好“保姆”,为群众提供便利,不断适应新时代人民群众对政务服务的新需求。(三)深化内外宣传,树立良好形象。要深入挖掘并及时总结作风整顿“四零”承诺服务创建工作中形成的典型经验做法,进一步强化内部宣传与工作交流,推动全市创建工作质效整体提升。要面向社会和公众庄严承诺并积极践诺,主动接受监督,同时要依托电台、电视台、报纸及微信、微博等各类媒体大力宣传xx队伍作风整顿“四零”承诺服务创建工作成果,不断扩大社会知情面和群众知晓率。

  • “改作风、提效能”专项行动工作总结

    “改作风、提效能”专项行动工作总结

    (五)服务群众提效能方面。一是政府采购服务提档升级。建成“全区一张网”,各类采购主体所有业务实现“一网通办,提升办事效率;全面实现远程开标和不见面开标,降低供应商成本;要求400万元以上工程采购项目预留采购份额提高至采购比例的40%以上,支持中小企业发展。2022年,我区政府采购荣获”中国政府采购奖“,并以全国第一的成绩获得数字政府采购耕耘奖、新闻宣传奖,以各省中第一的成绩获得年度创新奖。二是财政电子票据便民利民。全区财政电子票据开具量突破1亿张,涉及资金810.87亿元。特别是在医疗领域,全区241家二级以上公立医疗机构均已全部上线医疗收费电子票据,大大解决了群众看病排队等待时间长、缴费取票不方便的问题,让患者”省心、省时、省力“。

  • “大学习、大讨论、大调研”活动情况总结报告

    “大学习、大讨论、大调研”活动情况总结报告

    一、活动开展情况及成效按照省委、市委对“大学习、大讨论、大调研”活动的部署要求,县委立即行动,于8月20日组织召开常委会会议,专题传达学习省委X在读书班上的讲话精神。5月2日,县委召开“大学习、大讨论、大调研”活动推进会,及时对活动开展的相关要求、任务进行再安排再部署,会后制定并下发了活动实施方案、重点课题调研方案、宣传报道方案等系列文件,有效指导活动开展。5月17日、9月1日,县委再次召开常委会会议,专题听取“大学习、大讨论、大调研”活动开展情况汇报,研究部署下阶段工作。9月13日,召开全县“大学习大讨论大调研”活动工作推进座谈会,深入贯彻全省、全市“大学习大讨论大调研”活动工作推进座谈会精神,总结交流活动经验,对下一阶段活动开展进行安排部署。“大学习、大讨论、大调研”活动的有序开展,为砥砺前行、底部崛起的X注入了强大的精神动力。

  • 2024年度工作计划汇编(18篇)

    2024年度工作计划汇编(18篇)

    1.市政基础设施项目5项,总建设里程2.13km,投资概算2.28亿元。其中,烔炀大道(涉铁)工程施工单位已进场,项目部基本建成,正在办理临时用地、用电及用水等相关工作;中铁佰和佰乐(巢湖)二期10KV外线工程已签订施工合同;黄麓镇健康路、纬四路新建工程均已完成清单初稿编制,亟需黄麓镇完成图审工作和健康路新建工程的前期证件办理;公安学院配套道路项目在黄麓镇完成围墙建设后即可进场施工。2.公益性建设项目6项,总建筑面积15.62万㎡,投资概算10.41亿元。其中,居巢区职业教育中心新建工程、巢湖市世纪新都小学扩建工程已完成施工、监理招标挂网,2月上旬完成全部招标工作;合肥职业技术学院大维修三期已完成招标工作,近期签订施工合同后组织进场施工;半汤疗养院净化和医用气体工程已完成招标工作;半汤疗养院智能化工程因投诉暂时中止;巢湖市中医院(中西医结合医院)新建工程正在按照既定计划推进,预计4月中下旬挂网招标。