1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.③符号语言:任意a?α,都有l⊥a?l⊥α.
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.
1.探究:根据基本事实的推论2,3,过两条平行直线或两条相交直线,有且只有一个平面,由此可以想到,如果一个平面内有两条相交或平行直线都与另一个平面平行,是否就能使这两个平面平行?如图(1),a和b分别是矩形硬纸板的两条对边所在直线,它们都和桌面平行,那么硬纸板和桌面平行吗?如图(2),c和d分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺与桌面平行吗?2.如果一个平面内有两条平行直线与另一个平面平行,这两个平面不一定平行。我们借助长方体模型来说明。如图,在平面A’ADD’内画一条与AA’平行的直线EF,显然AA’与EF都平行于平面DD’CC’,但这两条平行直线所在平面AA’DD’与平面DD’CC’相交。3.如果一个平面内有两条相交直线与另一个平面平行,这两个平面是平行的,如图,平面ABCD内两条相交直线A’C’,B’D’平行。
9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
6.例二:如图在正方体ABCD-A’B’C’D’中,O’为底面A’B’C’D’的中心,求证:AO’⊥BD 证明:如图,连接B’D’,∵ABCD-A’B’C’D’是正方体∴BB’//DD’,BB’=DD’∴四边形BB’DD’是平行四边形∴B’D’//BD∴直线AO’与B’D’所成角即为直线AO’与BD所成角连接AB’,AD’易证AB’=AD’又O’为底面A’B’C’D’的中心∴O’为B’D’的中点∴AO’⊥B’D’,AO’⊥BD7.例三如图所示,四面体A-BCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=2.求EF的长度.解:取BC中点O,连接OE,OF,如图。∵E,F分别是AB,CD的中点,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE与OF所成的锐角就是AC与BD所成的角∵BD,AC所成角为60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1当∠EOF=60°时,EF=OE=OF=1,当∠EOF=120°时,取EF的中点M,连接OM,则OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
课题 | 平面与平面的垂直 | 单元 | 第八单元 | 学科 | 数学 | 年级 | 高二 |
教材分 析 | 本节内容是空间平面与平面垂直,由生活实际立体图形导入,进而引出本节要学的内容。 | ||||||
教 学 目标与核心素养 | 1.数学抽象:通过将实际物体抽象成空间图形并观察平面与平面垂直关系。 2.逻辑推理:通过例题和练习逐步培养学生将理论应用实际的。 3.数学建模:本节重点是数学中的形在讲解时注重培养学生立体感及逻辑推理能力,有利于数学建模中推理能力。 4.空间想象:本节重点是考查学生空间想象能力。 | ||||||
重点 | 平面垂直判定、二面角、面面垂直性质 | ||||||
难点 | 平面垂直判定、二面角、面面垂直性质 |
根据
教学过程 | |||
教学环节 | 教师活动 | 学生活动 | 设计意图 |
导入新课 | 竖电线杆时,电线杆所在的直线与地面应满足怎样的位置呢?为了让一面墙砌的稳固,不易倒塌,不易倒塌,墙面所在的平面与地面又应该满足怎样的位置关系呢? | 学生思考问题,引出本节新课内容。 | 利用生活实际引出本节新课内容。 |
讲授新课 | 1. 二面角 定义从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。 记法 棱为l,两个面分别为α、β的二面角记作α-l-β。 2. 思考:二面角的平面角的大小,与角的顶点在棱上的位置有关吗,为什么? 答:无关.如图,根据等角定理可知,∠AOB=∠A′O′B′,即二面角的平面角的大小与角的顶点的位置无关,只与二面角的大小有关. 3.二面角的平面角的特点: (1)角的顶点在二面角的棱上 (2)角的两边分别在二面角的两个面内 (3)角的两边都与棱垂直 4.例一:已知,如图所示锐二面角α-l-β,A为面α内一点,A到β的距离为2,到l的距离为4.求二面角α-l-β的大小. 5.利用平面角求二面角大小的步骤: (1)作二面角的平面角 (2)证明该角为平面角 (3)归纳到三角形求值 简记:一作、二找、三求解 6.例二:如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上的一点,且PA=AC,求二面角P-BC-A的大小. 解:由已知PA⊥平面ABC,BC在平面ABC内∴PA⊥BC ∵AB是⊙O的直径,且点C在圆周上,∴AC⊥BC 又∵PA∩AC=A,PA,AC在平面PAC内,∴BC⊥平面PAC 又PC在平面PAC内,∴PC⊥BC 又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角 由PA=AC知△PAC是等腰直角三角形∴∠PCA=45, 即二面角P-BC-A的大小是45 7.面面垂直定义 一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直,平面α与β垂直,记作α⊥β 8.探究:建筑工人在砌墙时,常用铅锤来检测所砌的墙面与地面是否垂直,如果系有铅锤的细绳紧贴墙面,工人师傅被认为墙面垂直于地面,否则他就认为墙面不垂直于地面,这种方法说明了什么道理? 这个方法说明,如果墙面经过地面的垂线,那么墙面与地面垂直。 9.定理:如果一个平面过另一个平面的垂线,那么这两个平面垂直。 符号语言:l 在α内,l⊥β,则α⊥β。 10.例三:如图所示,在四面体A-BCD中,BD= 总结:用定义证明两个平面垂直的步骤 利用两个平面互相垂直的定义可以直接判定两个平面垂直,判定的方法是: ①找出两个相交平面的平面角; ②证明这个平面角是直角; ③根据定义,这两个平面互相垂直. 11.练习一:如图所示,在正方体ABCD-ABCD中,求证:平面ABD垂直平面ACCA 证明:∵ABCD-ABCD是正方体 ∴AA⊥平面ABCD ∴AA⊥BD 又BD⊥AC ∴BD⊥平面ACCA ∴平面ABD⊥平面ACCA 12.例四:如图,AB是圆O的直径,PA垂直于圆o所在的平面,C是圆周上不同于A,B的任意一点,求证:平面PAC⊥平面PBC 证明:∵PA⊥平面ABC BC在平面ABC内 ∴PA⊥BC ∵点C是圆周上不同于A,B的任意一点,AB是圆O的直径 ∴∠BCA=90即BC⊥AC 又PA∩AC=A,PA在平面PAC中,AC在平面PAC中 ∴BC在平面PBC内 ∴平面PAC⊥平面PBC 13.练习二:如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B. 证明:平面AB1C⊥平面A1BC1 证明:∵四边形BCC1B1为梯形,∴BC1⊥B1C,又已知B1C⊥A1B, A1B∩BC1=B,∴B1C⊥平面A1BC1,又∵B1C在平面AB1C内, ∴平面AB1C⊥A1BC1 探究:如图,设α⊥β,α∩β=a,则β内任意一条直线b与a有什么关系?相应的b与α有什么位置关系? 证明:显然b与a平行或相交,当b//a时,b//α;当b与a相交时,b与α也相交。而当b垂直a时,b也垂直α。 14.练习三:如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60,侧面△PAD为等边三角形. (1)求证:AD⊥PB; (2)若E为BC边上的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论. 证明:设G为AD的中点,连接PG,BG,如图,因为△PAD为等边三角形,所以PG⊥AD,在菱形ABCD中,∠DAB=60,G为AD中点,所以BG⊥AD。又因为BG∩PG=G,所以AD⊥平面PGB。因为PB属于平面PGB,所以AD⊥PB。 (2)当F为PC的中点时,满足平面DEF⊥平面ABCD如图设F为PC的中点,连接DF,EF,DE,则在△PBC中,EF//PB.在菱形ABCD中GB//DE而EF属于平面DEF,DE属于平面DEF,EF∩DE=E,所以平面DEF//平面PGB,由(1)得AD⊥平面PGB,而AD属于平面ABCD,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD 规律方法证明两两垂直常用的方法: (1)定义法:即说明两个半平面所成的二面角是直二面角. (2)判定定理法:在其中一个平面内寻找一条直线与另一个平面垂直,即把问题转化为线面垂直 (3)性质法:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于此平面. 15.练习四:如图PA⊥平面ABC,平面PAB⊥平面PBC,求证:AB⊥BC 16.探究二:设平面α⊥平面β,点P在平面α内,过点P作平面β的垂线a,直线a与平面α有什么位置关系? 证明:我们知道,过一点只能做一条直线与已知平面垂直,因此,如果过一点有两条直线与平面垂直,那么这两条直线重合。如图,设α∩β=c,过点P在平面α内作直线b⊥c,根据平面与平面垂直的性质定理,b⊥β,因为过一点有且只有一条直线与平面β垂直,所以直线a与直线b重合,因此a在α内。 17.平面与平面垂直性质 例五:如图,已知平面α垂直平面β,直线a⊥β,a不在α内,判断a与α的位置关系。 解:在α内作垂直于α与β的直线b ∵α⊥β,∴b⊥β 又a⊥β∴a//b 又a不在α内 ∴a//α 即直线a与平面α平行 例六:如图,已知PA⊥平面ABC,平面PAB⊥平面PBC,求证:BC⊥平面PAB 证明:如图,过点A作AE⊥PB,垂足为E ∵平面PAB⊥平面PBC,平面PAB∩平面PBC ∴AE⊥平面PBC ∵BC在平面PBC内∴AE⊥BC ∵PA⊥平面ABC,BC在平面ABC内 ∴PA⊥BC又PA∩AE=A ∴BC⊥平面PAB 18.例七:如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60且边长为a的菱形.侧面PAD为正三角形,其所在平面垂直于底面ABCD. (1)若G为AD边的中点,求证:BG⊥平面PAD; (2)求证:AD⊥PB. 证明(1)连接BD,如图,在菱形ABCD中,∵∠DAB=60∴△ABD为正三角形又∵G是AD的中点∴BG⊥AD又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BG在平面ABCD内,∴BG⊥平面PAD (2)∵△PAD为正三角形,G为AD的中点,∴PG⊥AD 由(1)知BG⊥AD∴AD⊥平面PBG∴AD⊥PB 总结:应用面面垂直的性质定理,应注意三点: ①两个平面垂直是前提条件; ②直线必须在其中一个平面内; ③直线必须垂直于它们的交线. 19.练习 一、如图所示,四棱锥P-ABCD是菱形,∠BCD=60,E是CD的中点,PA⊥底面ABCD。证明:平面PBE⊥平面PAB 二、在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD垂直平面ABCD 证明:AB⊥平面VAD | 根据实例观察空间中的面面垂直
给出二面角特点
学生独立思考例二
小组讨论探究一并给出答案
学生独立完成例三
小组讨论例四
学生独立思考练习二
学生小组探究面面垂直性质
学生独立思考探究二
学生独立完成例五
| 通过具体立体图形体会面面垂直
培养学生的数形结合思想
段炼学生解决问题能力
段炼学生独立解决问题能力
加深对知识的掌握
段炼学生团队协作能力
段炼学生对于新知识的掌握
段炼其数学建模思想
锻炼其思考及总结能力
段炼学生独立解决问题能力
加强对知识的掌握 |
转载请注明出处!本文地址:
https://www.lfppt.com/worddetails_8353678.html1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。
一是要把好正确导向。严格落实主体责任,逐条逐项细化任务,层层传导压力。要抓实思想引领,把理论学习贯穿始终,全身心投入主题教育当中;把理论学习、调查研究、推动发展、检视整改等有机融合、一体推进;坚持学思用贯通、知信行统一,努力在以学铸魂、以学增智、以学正风、以学促干方面取得实实在在的成效。更加深刻领会到******主义思想的科学体系、核心要义、实践要求,进一步坚定了理想信念,锤炼了政治品格,增强了工作本领,要自觉运用的创新理论研究新情况、解决新问题,为西北矿业高质量发展作出贡献。二是要加强应急处事能力。认真组织开展好各类理论宣讲和文化活动,发挥好基层ys*t阵地作用,加强分析预警和应对处置能力,提高发现力、研判力、处置力,起到稳定和引导作用。要坚决唱响主旋律,为“打造陕甘片区高质量发展标杆矿井”、建设“七个一流”能源集团和“精优智特”新淄矿营造良好的舆论氛围。三是加强舆情的搜集及应对。加强职工群众热点问题的舆论引导,做好舆情的收集、分析和研判,把握时、度、效,重视网上和网下舆情应对。
二是深耕意识形态。加强意识形态、网络舆论阵地建设和管理,把握重大时间节点,科学分析研判意识形态领域情况,旗帜鲜明反对和抵制各种错误观点,有效防范处置风险隐患。积极响应和高效落实上级党委的决策部署,确保执行不偏向、不变通、不走样。(二)全面深化党的组织建设,锻造坚强有力的基层党组织。一是提高基层党组织建设力量。压实党建责任,从政治高度检视分析党建工作短板弱项,有针对性提出改进工作的思路和办法。持续优化党建考核评价体系。二是纵深推进基层党建,打造坚强战斗堡垒。创新实施党建工作模式,继续打造党建品牌,抓实“五强五化”党组织创建,广泛开展党员教育学习活动,以实际行动推动党建工作和经营发展目标同向、部署同步、工作同力。三是加强高素质专业化党员队伍管理。配齐配强支部党务工作者,把党务工作岗位作为培养锻炼干部的重要平台。
二要专注于解决问题。根据市委促进经济转型的总要求,聚焦“四个经济”和“双中心”的建设,深入了解基层科技工作、学术交流、组织建设等方面的实际情况,全面了解群众的真实需求,解决相关问题,并针对科技工作中存在的问题,采取实际措施,推动问题的实际解决。三要专注于急难愁盼问题。优化“民声热线”,推动解决一系列基层民生问题,努力将“民声热线”打造成主题教育的关键工具和展示平台。目前,“民声热线”已回应了群众的8个政策问题,并成功解决其中7个问题,真正使人民群众感受到了实质性的变化和效果。接下来,我局将继续深入学习主题教育的精神,借鉴其他单位的优秀经验和方法,以更高的要求、更严格的纪律、更实际的措施和更好的成果,不断深化主题教育的实施,展现新的风貌和活力。
今年3月,市政府出台《关于加快打造更具特色的“水运XX”的意见》,提出到2025年,“苏南运河全线达到准二级,实现2000吨级舶全天候畅行”。作为“水运XX”建设首战,谏壁闸一线闸扩容工程开工在即,但项目开工前还有许多实际问题亟需解决。结合“到一线去”专项行动,我们深入到谏壁闸一线,详细了解工程前期进展,实地察看谏壁闸周边环境和舶通航情况,不断完善施工设计方案。牢牢把握高质量发展这个首要任务,在学思践悟中开创建功之业,坚定扛起“走在前、挑大梁、多做贡献”的交通责任,奋力推动交通运输高质量发展持续走在前列。以学促干建新功,关键在推动高质量发展持续走在前列。新时代中国特色社会主义思想着重强调立足新发展阶段、贯彻新发展理念、构建新发展格局,推动高质量发展,提出了新发展阶段我国经济高质量发展要坚持的主线、重大战略目标、工作总基调和方法论等,深刻体现了这一思想的重要实践价值。
三、2024年工作计划一是完善基层公共文化服务管理标准化模式,持续在公共文化服务精准化上探索创新,围绕群众需求,不断调整公共文化服务内容和形式,提升群众满意度。推进乡镇(街道)“114861”工程和农村文化“121616”工程,加大已开展活动的上传力度,确保年度目标任务按时保质保量完成。服务“双减”政策,持续做好校外培训机构审批工作,结合我区工作实际和文旅资源优势,进一步丰富我市义务教育阶段学生“双减”后的课外文化生活,推动“双减”政策走深走实。二是结合文旅产业融合发展示范区,全力推进全域旅游示范区创建,严格按照《国家全域旅游示范区验收标准》要求,极推动旅游产品全域布局、旅游要素全域配置、旅游设施全域优化、旅游产业全域覆盖。
1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。
二是全力推进在谈项目落地。认真落实“首席服务官”责任制,切实做好上海中道易新材料有机硅复配硅油项目、海南中顾垃圾焚烧发电炉渣综合利用项目、天勤生物生物实验基地项目、恺德集团文旅康养产业项目、三一重能风力发电项目、中国供销集团冷链物流项目跟踪对接,协调解决项目落户过程中存在的困难和问题,力争早日实现成果转化。三是强化招商工作考核督办。持续加大全县招商引资工作统筹调度及业务指导,贯彻落实项目建设“6421”时限及“每月通报、季度排名、半年分析、年终奖励”相关要求,通过“比实绩、晒单子、亮数据、拼项目”,进一步营造“比学赶超”浓厚氛围,掀起招商引资和项目建设新热潮。四是持续优化园区企业服务。
(二)坚持问题导向,持续改进工作。要继续在提高工作效率和服务质量上下功夫,积极学习借鉴其他部门及xx关于“四零”承诺服务创建工作的先进经验,同时主动查找并着力解决困扰企业和群众办事创业的难点问题。要进一步探索创新,继续优化工作流程,精简审批程序,缩短办事路径,压缩办理时限,深化政务公开,努力为企业当好“保姆”,为群众提供便利,不断适应新时代人民群众对政务服务的新需求。(三)深化内外宣传,树立良好形象。要深入挖掘并及时总结作风整顿“四零”承诺服务创建工作中形成的典型经验做法,进一步强化内部宣传与工作交流,推动全市创建工作质效整体提升。要面向社会和公众庄严承诺并积极践诺,主动接受监督,同时要依托电台、电视台、报纸及微信、微博等各类媒体大力宣传xx队伍作风整顿“四零”承诺服务创建工作成果,不断扩大社会知情面和群众知晓率。
(五)服务群众提效能方面。一是政府采购服务提档升级。建成“全区一张网”,各类采购主体所有业务实现“一网通办,提升办事效率;全面实现远程开标和不见面开标,降低供应商成本;要求400万元以上工程采购项目预留采购份额提高至采购比例的40%以上,支持中小企业发展。2022年,我区政府采购荣获”中国政府采购奖“,并以全国第一的成绩获得数字政府采购耕耘奖、新闻宣传奖,以各省中第一的成绩获得年度创新奖。二是财政电子票据便民利民。全区财政电子票据开具量突破1亿张,涉及资金810.87亿元。特别是在医疗领域,全区241家二级以上公立医疗机构均已全部上线医疗收费电子票据,大大解决了群众看病排队等待时间长、缴费取票不方便的问题,让患者”省心、省时、省力“。
一、活动开展情况及成效按照省委、市委对“大学习、大讨论、大调研”活动的部署要求,县委立即行动,于8月20日组织召开常委会会议,专题传达学习省委X在读书班上的讲话精神。5月2日,县委召开“大学习、大讨论、大调研”活动推进会,及时对活动开展的相关要求、任务进行再安排再部署,会后制定并下发了活动实施方案、重点课题调研方案、宣传报道方案等系列文件,有效指导活动开展。5月17日、9月1日,县委再次召开常委会会议,专题听取“大学习、大讨论、大调研”活动开展情况汇报,研究部署下阶段工作。9月13日,召开全县“大学习大讨论大调研”活动工作推进座谈会,深入贯彻全省、全市“大学习大讨论大调研”活动工作推进座谈会精神,总结交流活动经验,对下一阶段活动开展进行安排部署。“大学习、大讨论、大调研”活动的有序开展,为砥砺前行、底部崛起的X注入了强大的精神动力。
1.市政基础设施项目5项,总建设里程2.13km,投资概算2.28亿元。其中,烔炀大道(涉铁)工程施工单位已进场,项目部基本建成,正在办理临时用地、用电及用水等相关工作;中铁佰和佰乐(巢湖)二期10KV外线工程已签订施工合同;黄麓镇健康路、纬四路新建工程均已完成清单初稿编制,亟需黄麓镇完成图审工作和健康路新建工程的前期证件办理;公安学院配套道路项目在黄麓镇完成围墙建设后即可进场施工。2.公益性建设项目6项,总建筑面积15.62万㎡,投资概算10.41亿元。其中,居巢区职业教育中心新建工程、巢湖市世纪新都小学扩建工程已完成施工、监理招标挂网,2月上旬完成全部招标工作;合肥职业技术学院大维修三期已完成招标工作,近期签订施工合同后组织进场施工;半汤疗养院净化和医用气体工程已完成招标工作;半汤疗养院智能化工程因投诉暂时中止;巢湖市中医院(中西医结合医院)新建工程正在按照既定计划推进,预计4月中下旬挂网招标。