《数学课程标准》中指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。只是在学生需要时给予恰当的帮助。”通过不同形式的习题帮助学生掌握新知。进一步突出本节课的重难点。尤其是创新题,1、编两个不同的方程,使方程的解都是ⅹ=6,2、在□中填入合适的数,使等式成立。具有一定的挑战性.只有当自己的观点与集体不一致时,才会产生要证实自己思想的欲望,从而激活学生思维的火花.但是提出挑战并不意味着要难倒学生,而是要激励学生在学习的过程中不断地去获得成功的体验.学生是学习的主体,只有通过学生自身的”再创造”活动,才能纳入其认知结构中,才可能成为有效的知识. 在教与学的活动中,有老师的组织、参与和指导,有同伴的合作、交流与探索。 “授之以鱼,不如授之以渔。”虽只有一字只差,却是两种截然不同的教育理念。我选择后者。这样既培养了孩子们分析、推理能力和思维的灵活性,又为学生的新知建构拓展出更大的空间!
这样充分尊重学生的独立思考的过程与结果,鼓励学生想出多种方法计算,在学生汇报交流、反馈、评价中初步感受到转化的数学思想,获得成功的学习体验,之后教师评价:大家能把新的问题转化成已有的经验来解决,这种分析思考的方法很好,你们还能提出类似的问题吗?进而引入进一步的探索当中,教师作出这样的提示,这道题没有元角分,你们能把它也转化成已经学过的乘法算式吗?在学生独立思考计算的基础上,组织小组讨论,给每个学生展示自己思维的机会,教师深入小组收集信息,然后组织全班讨论,揭示算理,得出计算的方法。这一过程要重点突出算理的探索,使学生认识到小数乘法与整数乘法的联系,利用积变化的规律合理解释算理,通过学生亲身经历,主动参与,积极思考,自学交流等活动过程,使学生真正获得数学的知识和学习方法。
本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.
本节通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.了解二分法的原理及其适用条件.2.掌握二分法的实施步骤.3.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.数学学科素养1.数学抽象:二分法的概念;2.逻辑推理:用二分法求函数零点近似值的步骤;3.数学运算:求函数零点近似值;4.数学建模:通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用.
四,说教学过程(一)基本功训练:通过2分钟口算练习以及听,说,动的训练,提高学生的口算能力及运算速度,培养学生的听,说,动的学习习惯.缓解学生的紧张情绪.(二)情景激趣,导入新课.通过谈话,同学们喜欢吃水果吗吃水果能吃出数学问题.这是出示例1的情境图,让学生说一说他们吃出了什么数学问题.这样设计的意图是通过学生自己观察发现数学信息,提出数学问题,培养学生解决问题的意识和能力,培养学生抓住有价值的数学信息的能力.(三)探究同分母分数加法.看到黑板上的和你想到了什么(比大,分母相同,根据这个分数你们能提个问题吗)这是注重培养学生多思考,多表达,在语言表达中深化对前面学习过知识的理解.发展学生的语言表达能力.
出示计算错误的学生算式,让学生进行判别。说说为什么错,错在哪里。之前学生基本掌握了加法的计算法则,在此基础上先让学生尝试计算。让学生运用知识迁移的方法,类推出两位数加两位数连续进位的计算方法。再采用讨论、比较等方式学习。这样充分发挥知识迁移的效力,又可体现学生学习的自主性。2、尝试练习解决三个班级一共捐款多少元?由于1班和2班共捐了96元已求出,所以只要计算96+58。这题先让学生独立完成后在小组中说说你是怎么算的,通过向别人表达计算的过程来达到进一步掌握连续进位加法的方法,又培养学生的口头表达能力。(三)巩固练习练习可以让学生巩固所学的知识,并对所学知识有进一步地提升,让学生学有所用。
(一)说教材《百分数的一般应用题》是在学生学过用分数解决问题和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。主要内容是求常见的百分率,也就是求一个数是另一个数的百分之几的实际问题,这种问题与求一个数是另一个数的几分之几的问题相同。所以求常见的百分率的思路和方法与分数解决问题大致相同。通过这部分教学,既加深了学生对百分数的认识,又加强了知识间的联系。这部分教材在安排上有以下一些特点:1、从学生已有的知识和生活经验出发,帮助学生理解数学。2、设置数学活动生活情境,培养学生的解决问题意识和探究精神。(二)说学生对学生来说,利用已有的知识和生活经验,依据数量关系列式解答并不困难,但要求学生找准谁和谁比,很重要。二、说教学目标与重难点根据以上分析,我确定了本节课的教学目标如下:1、使学生加深对百分数的认识,理解生活中的百分率的含义,掌握求百分率的方法。2、依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识3、让学生在具体的情况中感受百分数来源于生活实际,在应用中体验数学的价值。重点:解答求一个数是另一个数的百分之几的应用题。
第三层次:尝试练习让学生独立完成教材117页的第3题,个别学生板演,教师在学生完成后集体点评,强调学习的难点。第三个环节:变式练习,巩固深化练习的设计要抓基础知识与发展创新能力紧密结合起来,以达到发展思维,形成技能的目标。在此环节我设计了如下练习:1、定位练习。仿照例3出示类似的两道应用题,要求学生读题,画图,深入理解题里的数量关系,列出数量关系式。强化难点,形成技能。2、提高题:同来互相编题,互相解答。通过以上练习,促使学生将新的知识溶入到已有认知结构中,以利于更好的迁移和运用。第四个环节课堂作业反馈信息完成课本练习二十三第4-7题(三)说“诱思探究”在本节课的具体体现1、以学生为主体,教学中多次引导学生尝试练习,引导学生把旧知与新知进行对比;引导学生自主探索,亲身体验,切实把学生推向学习探索的第一线。体现了“诱思探究”对当代课堂教学的要求。
1.本课修订版教材和未修订时的教材没有变化。教材首先是复习文字题:求一个数的几分之几是多少;然后教学例1:“学校买来100千克白菜,吃了 ,吃了多少千克白菜?”这道例题本身和学生联系不紧密,题材无新意,无情趣,课后有些习题又没有紧密结合生活实际,如第16页第7题:指出下面每组中的两个数,应把谁看作单位“1”?①乙是甲 。②乙的 相当于甲。这样教材本身就难以激发学生的学习兴趣,更谈不上给学生一种自主学习的氛围。面对这种现状,我们教师就应紧紧结合《数学课程标准》,灵活地、创造性地使用教材,体现新课程理念。2.课改的基本理念是:要关注学生、关注过程、关注发展。这节课我是打破了传统的教学方式,紧密结合新课程理念精心设计的。课上学生的反应与以往大不相同。首先在课前问题情境部分,学生的反应就让我惊喜,在学生自己的见解中,居然发现了地球吸引力和月球吸引力之间的关系,这是学生创新能力的真实表现。
师:同学们真聪明,小精灵的问题回答出来了,现在就让我们一起走进儿童乐园吧。(出示课件)请大家注意观察,儿童乐园中都有哪些景点?师:从儿童乐园出发经过百鸟园去猴山一共有几条路?请同学们仔细观察:从儿童乐园到百鸟园有几条路?从百鸟园去猴山有几条路?(生回答。)师:我们给这5条路分别标上序号。(课件演示)现在请同学们想一想从儿童乐园的入口经过百鸟园到达猴山一共有几条路线?请同学们把答案写在记录纸上。(生汇报。)师:路线设计好了,让我们一起到猴山看一看可爱的小猴子吧!(放猴山的录像。)师:看,它们是一对著名的动物小明星,会演杂技的小猴宝宝和贝贝,你们想和它们照相留念吗?生:想。师:好!那我们每个人都和宝宝、贝贝各照一张相片,同学们想一想,我们全班40个人一共要照多少张相片儿呢?
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
如通过数方格的方法求出三角形面积,让学生用两个三角形拼摆。一方面启发学生设法把研究的图形转化为已经会计算面积的图形,另一方面主动探索所研究的图形与已学的预先之间有什么样的联系,从而找出面积的计算方法,而不是把计算公式直接告诉学生。这样,既使学生在理解的基础上掌握三角形面积计算公式,印象深刻,又培养了学生的思维能力,动手操作能力,发展了空间观念。5、教材重点、难点和关键本节教学内容的重点是掌握三角形面积的计算公式;难点是理解三角形面积公式的推导过程;关键是通过操作实验,使学生明确每个三角形的面积是等底等高的平行四边形面积一半。在教学过程中注意以下几点,重点难点问题就迎刃而解。⑴ 加强学生动手操作,通过三次对两个完全相同的直角三角形、锐角三角形、钝角三角形的拼摆,引导学生弄清三角形面积与平行四边形面积关系,启发学生探索三角形面积的计算方法。
(1)猜想设疑。组织学生进行游戏实践,结果可能是选择和少的那队赢了。为什么选择和多的那队没胜,选择和少的那队却胜了呢?这里面又藏着什么奥秘呢?“猜想”是有方向的猜测和判断,是学生有效学习的良好准备。这里通过引导学生大胆猜测,由猜测结果与实际结果不同而引发学生的认知冲突,进而激发学生的求知欲,为后面的教学埋下了伏笔,从而很自然的过渡到下一个环节。(2)统计实验。这部分教学让全体学生参与获得知识的全过程,并在实验中与统计知识有机结合起来,提高了学生综合运用知识的能力。同时让全体学生参与实验统计,实验数据更加充分,实验结果与预测更加接近,从而达到实验目的。
第一:导课。在这个环节中,首先对学生提出《课堂常规》要求,以对口令、比一比的形式,让学生了解《常规》、遵守《常规》;再复习8、9的组成,为熟练口算扫清障碍。第二:新课。1、结合情境,引导学生充分感受“一图四式”。由于学生已经有了看一幅图列出两个算式的基础,所以列出加法算式相对容易一些,而列出减法算式则是这部分的难点。因此我采用小组合作的方式,让学生以看图说话的方式搜集相关数据,初步感知根据一幅图可以列出四道不同的算式。2、在老师的指导下进行操作,通过摆苹果图使学生进一步巩固和理解“一图四式”。在计算过程体现加减法之间的联系。3、帮助学生积累计算方法,为学生提供创造的空间。直接出示算式5+3、3+5、8-3、8-5计算,提问:你是怎样算出得数的?鼓励学生说出多种计算方法,使计算方法多样化(如:数数、想数的组成与分解、调换加数的位置、算减法想加法等)。
为什么B和C的答案都对呢?(因为比还可以写成分数的形式,但是读还是读做几比几。)4、判断:(1)小明今年10岁,爸爸37岁,父亲和儿子的年龄比是10∶37。(2)一项工程,甲单独做要7天完成,乙单独做要5天完成,甲乙两人的工作效率比是7∶5。(3)大卡车的载重量是6吨,小卡车的载重量是3吨,大小卡车载重量的比是2。【2】第二层练习1、写出比值是2的比。【3】随机练习(看时间情况定)小明今年12岁,是六年一班学生,该班共有42个学生,小明爸爸今年38岁,在保险公司上班,每月工资1000元,年薪12000元,小明妈妈每月工资800元,年薪9600元,她所在单位有职工24人。要求:根据题目中提供的条件,寻找合适的量,说出两个数之间的比。五、课堂总结,拓展延伸。1、这节课学习了什么知识?你有什么收获?2、你能说出一些生活中的关于比的例子吗?(学生举例)
多年的小学教学经验告诉我:小学高年级的学生已有一定的自学能力,关键是看我们设置的情景和学生的生活是不是紧密联系,是不是唤起了学生的已有表象,并不和使用多种媒体有绝对联系。所以在学习例题中我引导学生自主探讨,从中发现问题,提出问题,最后独立解决问题,从而训练学生数学语言表达能力,发展学生的创造性思维。⒋质疑问难。㈣新知总结对上面所学知识,教师引导学生作一次归纳总结,让学生明确要求圆周长时,必须设法求得圆的直径或半径。这样使学生对求圆周长有明确的认识,进一步深化重点。㈤新知运用国家教委加强与改进小学数学教学的意见中提出:基础训练是使学生融会贯通地掌握知识,形成熟练技能和发展智力的重要手段。所以在本节练习中我以基础练习为主,适当补充了提高练习。
情感态度与价值观:1、能够在自己独立调查、分析、思考的基础上,积极参与小组讨论,敢于发表自己的意见。2、使学生能够综合应用所学的知识解决生活中的合理存款问题,感受数学与现实生活的密切关系。3、使学生认识到数学应用的广泛性并培养学生的投资意识教学重点及难点1、使学生能自主探索合理存款的最大收益问题的方法。2、综合应用所学的知识认真地分析数量关系,正确地解决日常生活中相关的实际问题。二、教学教法分析1.教法设计为了更好的突出重点,突破难点,完成教学目标,我结合学生的心理特点,首先采用“情境法”引出问题,再“学生汇报”调查结果。接着“师生互动探究”收益最大的存款方式,学生在“自主探索讨论”中掌握根据实际情况合理存款。同时利用多媒体等教学手段,激发学生的学习兴趣,帮助学生突破难点,提高课堂教学效率。2.学法指导本节课我重点立足于学生的“汇报”和“设计”,并采用学生整理信息口述、小组讨论,同桌讨论,合作计算等多种方法,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦。