
2、创设学生熟悉的生活情境,探究新知首先,我让学生说一说教材45页的情境图,反映的是什么内容?谁来读一读6副图的信息,让学生观察,使学生初步理解“速度”的含义。接着让学生说一说自己了解的其他交通工具的速度。让学生说你是怎样读速度的,接下来点播速度的写法。为以后的速度、时间、路程三者的关系打下基础。3、自主探究,学习新知教师提供信息:,人骑自行车1小时大约可以行16千米,3小时可以行多少千米?让学生根据这个信息列出算式,再要求学生用自己已有的知识经验独立口算,交流算法得出计算结果。为了检查学生掌握的情况和语言的表达能力我出示以下4个小题。18×4=、24×3=、25×2=、14×6=4、交流汇报,建构知识由学生汇报不同的算法过程,引导学生对比不同算法的特点,确定最优化的算法。

(四)深入探究,重新审视对策问题解决问题不是学习的最终目的,让学生不断体验对策的价值才是关键所在。对策的价值在哪里?设计对策的关键是什么?把问题抛给学生去思考,一方面让学生再次感受正确对策达到“以小打大”、“以弱胜强”妙处,更重要的是让学生明确设计对策的关键前提是什么?即“知己知彼,百战不殆”的数学思想,以便根据对手的变化灵活运用对策。教学步骤设计:1、学生探讨,如果齐王的下等马都比田忌的上等马快,田忌还有获胜的可能吗?2、田忌赛马第二次获胜的前提是什么?(田忌猜测道齐王安排赛马的出场顺序还和第一次一样)3、如果齐王安排赛马的出场顺序改变了,田忌该怎样才能获得胜利?(找两位同学分角色演示一下)4、回忆课前时候,老师为什么会在纸牌游戏“比大小中”屡战屡胜。

二、探究交流,引导概括 —— 方程为了培养学生的发现和抽象概括能力,同时进一步理解方程的意义,我让学生分组学习,引导他们先找出②20+χ=100,⑥ 3χ=180,⑧100+2χ=3×50像上面三臄等式的有共同特征,然后归纳概括什么叫做方程?最后得出:像这样的含有未知数的等式,叫做方程。三、讨论比较,辨析、概念 —— 等式与方程的关系为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过四人合作用自己的方法创作 “ 方程 ” 与 “ 等式 ” 的关系图,并用自己的话说一说 “ 等式 ” 与 “ 方程 ” 的关系:方程一定是等式,但等式不一定是方程。四、巩固深化,拓展思维 —— 练习1 、“做一做”:2、判断是否方程3、“方程一定是等式,等式也一定是方程”这句话对吗?4、叫学生用图来表示等式和方程的关系。

一、说教材:稍复杂的方程的教学任务例1教学解方程ax±b=c及其应用(列方程解形如ax±b=c的问题)(1)把解方程和用方程解决问题有机结合,在解决问题的过程中解较复杂的方程。(2)结合现实素材(足球上两种颜色皮的块数)引出,这种问题用算术方法解决思考起来比较麻烦。(3解方程的过程其实是由解若干基本方程构成的(y-20=4,2x=24),需要强调把2x看成一个整体。(4)可以列出不同的方程,如2x-4=20,关键是使学生理解数量关系。二、说学生:学生在前面已经学习了简单的方程数量关系,及简单方程式的解法,而且我在前面的教学中已经笨鸟先飞,让学生接触了形如:ax±b=c的方程式。三、说教法:根据学生的实际情况,我准备在教学过程中,重点讲解稍复杂方程式的数量关系式的分析研究,让学生根据应用题的题意列出正确的数量关系式。

一、创设情境,引入新课。课开始,首先通过谈话问学生“你们喜欢玩游戏吗?”随后呈现例题的情境图,让学生在观察中清楚的知道袋中有4个红球和2个红球。然后教师揭示摸球游戏的规则:每次任意摸一个球,摸好后放回袋中,一共摸30次。摸到红球的次数多算小明赢;摸到黄球的次数多算小玲赢。接着让学生猜一猜谁赢得可能性大一些。预设学生都会猜是小明赢得可能性大一些。然后组织学生在小组里进行摸球实验,并把摸的结果记录在书本例题的第一个记录表中,验证刚才的猜想。在学生操作完之后,让学生明确小明赢得可能性大一些。接着引导学生产生质疑:“这样的游戏公平吗?为什么?”引导学生小结:口袋中红球的个数比较多,所以每次任意摸一个球,摸到红球的可能性要大,最后小明赢得可能性也就相应地要大一些,这样摸球的游戏规则是不公平的。在此基础上揭示课题并板书:游戏规则的公平性。

多年的小学教学经验告诉我:小学高年级的学生已有一定的自学能力,关键是看我们设置的情景和学生的生活是不是紧密联系,是不是唤起了学生的已有表象,并不和使用多种媒体有绝对联系。所以在学习例题中我引导学生自主探讨,从中发现问题,提出问题,最后独立解决问题,从而训练学生数学语言表达能力,发展学生的创造性思维。⒋质疑问难。㈣新知总结对上面所学知识,教师引导学生作一次归纳总结,让学生明确要求圆周长时,必须设法求得圆的直径或半径。这样使学生对求圆周长有明确的认识,进一步深化重点。㈤新知运用国家教委加强与改进小学数学教学的意见中提出:基础训练是使学生融会贯通地掌握知识,形成熟练技能和发展智力的重要手段。所以在本节练习中我以基础练习为主,适当补充了提高练习。

情感态度与价值观:1、能够在自己独立调查、分析、思考的基础上,积极参与小组讨论,敢于发表自己的意见。2、使学生能够综合应用所学的知识解决生活中的合理存款问题,感受数学与现实生活的密切关系。3、使学生认识到数学应用的广泛性并培养学生的投资意识教学重点及难点1、使学生能自主探索合理存款的最大收益问题的方法。2、综合应用所学的知识认真地分析数量关系,正确地解决日常生活中相关的实际问题。二、教学教法分析1.教法设计为了更好的突出重点,突破难点,完成教学目标,我结合学生的心理特点,首先采用“情境法”引出问题,再“学生汇报”调查结果。接着“师生互动探究”收益最大的存款方式,学生在“自主探索讨论”中掌握根据实际情况合理存款。同时利用多媒体等教学手段,激发学生的学习兴趣,帮助学生突破难点,提高课堂教学效率。2.学法指导本节课我重点立足于学生的“汇报”和“设计”,并采用学生整理信息口述、小组讨论,同桌讨论,合作计算等多种方法,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦。

2.交流讨论的结果:(老师根据学生的汇报板书)①假设都是鸡,则有8×2=16只脚,实际有26只脚多了26-16=10只脚.②一只鸡换成一只兔,就会多4-2=2只脚,所以笼子有10÷2=5只兔.③鸡就有8-5=3只.师:真是了不起,不用试也能求出鸡兔来,刚才我们是假使全是鸡,如果假使全是兔,会是怎样的情况呢?3.你还会用所学的方法解决吗?(引导学生用方程解答)4.我们已经能够用三种方法解答鸡兔同笼问题,到底对不对呢?怎样才能知道?———检验(板书)[设计意图:此环节是本课的重点,放手让学生合作探究,学生从体验、尝试到讨论、汇报,结合课件的直观演示,学生个人或集体的智慧在这里可以得到充分的展现。方程法、假设法对于大部分学生来说至少有一种方法是他自己会理解或掌握的,老师在学生汇报的过程中应机敏地倾听,机智地诱导,引导学生较为完整、准确地说明算理,特别是假设法算理,进而让全体学生在交流的过程中学会倾听、学会思考、学会解释、学会质疑,学会辩驳。]

⑴各种收入是什么意思?请举例说明;⑵什么叫税率?你能写出税率的公式吗?(税率=应纳税款÷各种收入×100%)3、介绍,纳税比率。税率的高低由国家统一规定,国家规定下面的一般纳税率是:⑴增值税13%或者17%⑵营业税务3%至20%(行业不同,标准不等,如交通行业5%,娱乐行业20%)⑶消费税务3%到50%不等。⑷个人所得税5%到45%不等。[意图:理解税种是教学中的难点,为此,采取适当分层,多举实例,观察思考,讨论交流,介绍说明等方法,让学生了解在现实生活中纳税的种类,为例题的教学做好铺垫。]活动三:学习纳税算法。1、出示例题:一家饭店十月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这个饭店十月份应缴纳营业税约多少万元?2、读题理解:①按营业额5%缴纳营业税这句话你是怎样理解的?②如何列式计算?3、试做汇报:学生独立试尝试计算后,指名回答,教师板书:30×5%=1.5(万元)4、反馈练习:

3、整理数据,确定思路。在此认知基础上,紧接着引申出进一步研究的问题“各条跑道的起跑线应该相差多少米?”这个问题很难通过观察得到,需要学生收集相关数据,具体分析起跑线的位置与什么有关。使学生在汇报的过程中自然的发现:要确定跑道的起跑线,只要算出每相邻两条跑道的长度差就可以了。有的学生说,由于跑道的直道长度是相同的,所以算出弯道的长度差就可以了。在这里,教师或学生还可就图片说明半圆形跑道的直径是如何规定的,也就是里圆的直径加上两个跑道的宽度,以及跑道线的宽在这里忽略不计等问题向其它学生作一具体说明。在些环节,让学生进行观察,让他们自己发现规律,培养他们抽象概括能力和语言表达能力,在这个环节中教师要灵活的驾驽课堂,及时的抓住课堂中新生成的问题,使问题得以提升,把课堂推向了高潮.

学生的学习活动是一个生动活泼而富有个性的过程,为了把学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学的知识和方法解决实际问题。我又设计了以下练习题:1、脑筋乐园:学校田径运动会即将举行,你有办法帮学校在操场上画出一个半径为50米的圆吗?2、(1)应用圆的知识解释下列现象,并写出来。为什么井盖也得做成圆形的?人们在围观的时,为什么会自然地围成圆形?(2)搜集有关圆的资料。贴到教室的数学角上,大家共享。3、画出各种大小、不同颜色的圆,组合出一幅美丽的图画。(设计意图)将学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学知识和方法解决实际问题。(我认为把本句提前,这里删去,这样显得更连贯)(五)全课总结1、让学生谈收获,进行自我评价。2、我对整节课进行知识要点归纳和对学生学习情况进行评价。(这样总结,我注重学生的自我评价,自我体验和个性发展。即学生情感的体验和收获)(我认为蓝色字那句可删去)

二、说教学目标、教学重难点我对教材的认识,以及学生的年龄特点,我确定的教学目标有3个:知识与技能目标:让使学生经历编5的乘法口诀的过程,进一步理解乘法的意义,掌握5的乘法口诀,提高应用乘法解决实际问题的能力。过程与方法目标:使学生在编口诀和用口诀的过程中,初步培养发现简单规律的能力,积累积极的学习情感,增强学习数学的自信心。情感与态度目标:让学生通过数学活动进一步体会数学在现实生活中的应用,增强学习数学的积极情感,并获得成功的体验,提高学好数学的信心。教学重点是:经历编口诀的过程,理解每句口诀的含义;难点是:学生自己尝试探究并得出5的乘法口诀。三、说教法学法接着,我说说本课采用的教学方法。围绕本课的教学目标和教学重难点,我采用了设置问题情境、激发学习兴趣与组织学生动手实践相结合的方法。

(第三的环节)观察比较,巧妙记忆(英国的社会学家斯宾塞说:教育中应该尽量鼓励个人发展的过程。应该引导儿童自己进行探讨,自己去推论。给他们讲的应该尽量少些,而引导他们去发现的应该尽量多些)首先让学生独立观察,再把记忆口诀的好方法跟小组的成员说一说。接着让学生把自己的好方法和大家一起分享:有学生说:“我的方法是积的十位比几个9的几少1,个位加十位等于九,所以个位是9减十位上的数。比如:6乘9,积的十位就是5,个位是9减5就是4。”还有学生说:“我的方法跟他的不同,我用的方法是:几个9就跟几十比,有几十减几。比如:4乘9,跟40比,用40减4就是36。分享了同学的好方法我指导学生手指记忆口诀的方法。接着让学生用你喜欢的方法试背口诀。然后我还采用师生对口令,同桌对口令,男女生比赛对口令方式进行练习。

【教学设想】《课程标准》指出:“实践活动是培养学生进行活动探索与合作交流的重要途径。”在这一理念的支持下,我设计了以小组为单位进行测量实践活动。一、将学生个体间的学习关系改变为“组内合作”学习的关系。通过让学生小组合作活动学习,培养学生的合作意识、集体观念,培强了学生对集体的责任感受和荣誉感。二、根据学生的实际情况,我合理选取活动素材,向学生提供了具体有趣、富有一定启发性的活动。全课共有四部分:第一部分,课前律动;课堂开始配以儿童喜欢的音乐,让学生在轻松愉悦中进入课堂。第二部分,复习旧知、引入新课;通过对前面所学知识的复习,加深对长度单位“厘米”和“米”的认识。第三部分,活动体验、寓教于乐;这一部分共五个层次;第一层,选取了比较容易的活动,在木条上测量一米的长度,巩固用尺子测量物体长度的方法;第二层,小组分工合作测量与同学们朝夕相处的课桌的长、宽、高这一实际问题,渗透了合作方法;

二、说教法学法教师的教是为了学生更好的学。计算教学都是从简单到复杂螺旋上升的,最基础的计算原理和方法支持了这样的发展提高。本节课的教学以学生喜爱的卡通人物为背景,通过探索卡通人物的秘密,来激发学生的学习兴趣。然后通过比赛等形式,引导学生动脑,动眼,使学生变苦学为乐学,把数学课上的有趣、有益、有效。在教学例题时,让学生尝试计算三位数乘两位数的笔算方法,鼓励学生自己算。学生已经能笔算三位数乘一位数和两位数乘两位数。与三位数乘一位数相比,三位数乘两位数需要多乘一步,并把两次的部分积相加。充分利用学生己有的计算知识和经验,把新旧知识结合在一起,体会计算时的相同点,促进认知同化,完善认知结构。三、说教学目标1、知识技能目标:让学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法,能正确地进行计算。

第三个规律,商不变的规律。这是本课的重点内容。有了两次的探究经验,这一规律的学习与理解,可以完全放手让学生自主进行。猜想如果商不变,被除数、除数会发生什么变化呢?学生根据已有的经验,可能会有不同猜想,我要求学生带着问题通过计算、观察、比较、主动探讨总结出:被除数和除数同时扩大(或缩小)相同的倍数(0除外)商不变。利用合作学习,通过动脑动口动手,既提高学生解决问题的学习能力,又培养了合作学习的意识和习惯。给学生提供展示研究成果的机会,体验成功。需要教师提醒的是“有没有被除数和除数同时乘或除以不相同的数,商也不变的?”学生举反例加以说明并指出“相同的倍数不包括0”。设计这个环节,也有意让学生去验证商不变性质。学生在表述时,对于逻辑的严密性和语言的完整性需要老师及时指导,在突出重点的同时培养学生的语言表达能力。整个环节在验证的基础上,步步深化商的变化规律,为学生应用新知做好铺垫。

请学生先用计算器求出各题的积,然后观察各题中相乘的两个数及所得的积,自主探索和发现积的变化规律。最后进行全班交流,教师做适当总结:这几道算式第一个乘数都是142857,第二个乘数分别是1、2、3、4、5、6,它们的得数与第一个乘数一样,都是由1、2、4、5、7、8这六个数字组成的六位数,不过各个数字所在的数位不同,但如果把这个六位数的乘数按顺时针方向排列在一个圆面上,可以发现这六个积里各数字的排列顺序是一样的,只不过起点不同:乘1的积是从最小的数“1”开始,乘2的积是从第二小的数字“2”开始,乘3的积是从第三小的数字“4”开始……,乘6的积是从最大的数字“8”开始。(2)再出示“想想做做”的第4题先出示:1×1=

8、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)〈这一环节意在让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉(三)、深化巩固1、学习例1(1)、借助教具演示,理解“横截面”的含义。(2)、弄清渠口、渠底、渠深各是梯形的什么?(3)、学生尝试计算横截面积。〈巩固新知是课堂教学中不可缺少的一个过程,这一环节是为了将学生的学习积极性再次推向高潮,能更好地运用公式计算梯形面积,从中培养了学生解决简单实际问题的能力。〉

为什么B和C的答案都对呢?(因为比还可以写成分数的形式,但是读还是读做几比几。)4、判断:(1)小明今年10岁,爸爸37岁,父亲和儿子的年龄比是10∶37。(2)一项工程,甲单独做要7天完成,乙单独做要5天完成,甲乙两人的工作效率比是7∶5。(3)大卡车的载重量是6吨,小卡车的载重量是3吨,大小卡车载重量的比是2。【2】第二层练习1、写出比值是2的比。【3】随机练习(看时间情况定)小明今年12岁,是六年一班学生,该班共有42个学生,小明爸爸今年38岁,在保险公司上班,每月工资1000元,年薪12000元,小明妈妈每月工资800元,年薪9600元,她所在单位有职工24人。要求:根据题目中提供的条件,寻找合适的量,说出两个数之间的比。五、课堂总结,拓展延伸。1、这节课学习了什么知识?你有什么收获?2、你能说出一些生活中的关于比的例子吗?(学生举例)

2、教材分析整十数加、减整十数的计算是在10以内加、减法的基础上进行的,只是计数单位不同,这里以十为计数单位。教学内容的编排,分三个层次:一、以实际情景——花卉展提供计算题,并呈现算法的多样化;二、让学生动手操作(如摆小棒)理解算理、掌握算法;三、脱离直观手段,让学生思考算法。通过让学生在生动具体的情境中学习计算,引导学生独立思考与合作交流多种不同的算法,进一步培养计算能力。这样安排,有助于学生加深对相同单位的数可以直接相加、减的认识,为后面学习任意两个数相加、减打基础。整十数加、减整十数属于计算教学中的重点内容之一,应给予足够的重视。教材的编排是由直观操作等依靠实物思考到脱离实物思考,遵循由具体到抽象的原则,有利于学生抽象思维的培养,为进一步提高计算速度、培养计算能力,解决实际问题打基础。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。