一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
我们学校积极响应“亿万青少年阳光体育运动”号召和苏州市三项规定,切实保证我们学生每天一小时体育锻炼时间。热爱体育、参加锻炼、崇尚运动应该成为广大青少年的时尚。我们要认真上好每一节体育课,在环形跑道上飞奔,在绿茵球场上驰骋,在篮板下腾跃,舒展每一个关节,激活每一个细胞,强健我们年轻的体魄展示我们青春的活力!我们要充分用好大课间,伴随着明快的音乐,以班级为单位有序地进入操场。广播操或跑操结束后,大家有序地分散到校园的各个指定场地参加分项体育活动。随着动感音乐的响起,师生开展丰富多彩的活动,让老师和学生们的脸上洋溢着幸福的笑容。有一个真实的故事,同样告诉了我们体育运动的重要性与好处。法国著名作家雨果,年青时很有才华。29岁就写了长篇小说《巴黎圣母院》,这本小说轰动了整个法国。之后他还写了很多小说、散文、诗歌……可正当他激情奔放的时候,心脏病却突然发作了。许多人看到雨果发青的脸色,都为他感到惋惜。人们都以为巨星就要坠落了。可雨果并不悲观,他在医生的指导下,每天坚持跑步、游泳、爬山。没多久,雨果的病情渐渐好了起来。于是他又提起笔重新写作。60岁创作了文学名著《悲惨世界》,80岁创作了戏剧《笃尔克玛》。最终他活了84岁。人们看到雨果40岁得了心脏病,最终却成了一个长寿者,都赞叹不已地说:“这真是一个奇迹。”
也许,你们早已习惯了圣诞节的狂欢,习惯了在"母亲节"送给妈妈小礼物,习惯了在"父亲节"向爸爸表达感激之情。其实,一年365天,还有许多印有"中国"标签的节日,如春节、端午节、中秋节等。这些传统节日折射着古老的中国文化,象征着丰富的华夏文明,闪耀着龙的传人无穷的智慧。端午节国旗下讲话稿幼儿园 老师们,同学们:大家早上好!我今天国旗下讲话的题目是:端午节农历五月初五是我国的传统节日端午节。端午节,又称端阳节。关于端午节起源的传说有很多,其中,纪念屈原的说法流传得最广。历史上的这天人们会通过赛龙舟、包粽子等形式来纪念一颗不朽的灵魂屈原。屈原是我国古代伟大的爱国诗人,出生在两千多年前战国时期的楚国。他为人正直,学识渊博,很有才干,在楚国担任要职。因为他坚决主张抗击秦国侵略,而受到打击、排斥,被楚王赶出了朝廷。屈原悲愤至极,在流放途中写下了许多充满爱国主义精神的诗篇,如:《离骚》、《天问》、《九歌》等影响深远的诗篇。后来,秦国军队攻占了楚国的都城。
第一篇:国旗下讲话稿幼儿尊敬的老师,亲爱的小朋友们:大家好!我是大三班的小朋友,今天我讲话的主题是:我们的眼睛。小朋友们知道全国爱眼日是哪一天吗?是每年的六月六日。眼睛是心灵的窗户,可我们的眼睛周围却有五个敌人,一号敌人是酒精,所以小朋友要离着酒精远远的。二号敌人是烟,如果身边有人吸烟,你也应该离他远一点。三号敌人是干燥,我们可以多喝水打败敌人。四号敌人是过度日晒,在炎热的夏天,我们尽量不要在太阳底下暴晒。五号敌人是睡眠不足,小朋友们一定要保证充足的睡眠,这样对眼睛才有好处。此外还应当养成良好的用眼习惯,比如不在阳光下看书,不在摇晃的车上看书,不躺在床上看书,看电视、玩电脑的时候不能离得太近,时间也不能超过30分钟,用眼一段时间后,要注意休息,看看远处和绿色的植物,还有一点,就要养成良好的书写姿势,做到指尖离笔尖一寸,胸口离桌面一拳,眼睛里书本一尺的要求。眼睛是我们的宝贝,小朋友们可一定要好好的保护它哦!谢谢大家!!
即将到来的6月1日是震灾过后的第一个儿童节,多少震区的孩子们,是在失去了父母亲人,躺在病床上过的第一个儿童节!不能像以往那样大肆庆贺,不能像以往那样收到父母的礼物,不能像以往那样和同学们在校园嬉戏……那会是怎样的一个儿童节啊?我们希望这不是一个孤单的儿童节,没有了父母亲人,没有了老师同学,还有我们在他们的身边,有13亿的亲人在他们的身边!这几天发生的事情实在是太多太多,远远超过了一个孩子所能承受的范围,恐怕在他小小的心灵上早已印下了永远不能磨灭的痕迹,那样的伤痕累累,那样的血肉模糊,那样的泪流满面……总想为他们做些什么,哪怕只是一个无声的拥抱,却又觉得自己是那么的无力,渺小,沧海一粟……但,我们13亿的亲人都在关心着他们!大家都是那么关心和爱护着灾区的孩子们,那种心疼,那种感动,一直在心底蔓延着。
五月的时光在不知不觉间流逝,六月的阳光将照耀在我们的脸上。天真的笑脸,欢快的笑声,明天我们将迎来六一国际儿童节。目前,各国政府普遍关注儿童的未来,保护儿童的权益。联合国1990年通过的《儿童权利公约》,我国是参与制定国和签约国之一。在批准《儿童权利公约》的同一年,我国颁布了《中华人民共和国未成年人保护法》,这对维护少年儿童的权益起到了积极的作用。“六一”是我们最快乐的节日,因为: 我们是家庭的宝贝,更是家庭的希望。你们能够快乐地成长,家庭就充满欢歌与笑语。我们是学校的学生,更是学校的希望。我们能够全面地发展,学校就充满生机与活力。我们是社会的未来,更是社会的希望。我们能够和谐地发展,社会就充满热情与友爱。我们是祖国的花朵,更是祖国的希望。我们能够茁壮地成长,祖国就充满美好与希望。我们在延安的怀抱中成长,我们充满快乐,努力学习,学会做人、学会求知、学会办事、学会健身,成为新一代的延安人。
篇一敬爱的老师、亲爱的小朋友们:大家新年好!我是大一班的xx。今天,我很荣幸地站在国旗下讲话。看,我们的国旗冉冉上升,从这一刻起,新的一学期又开始了,你们准备好了吗?新年开学,我想送小朋友们四件新年礼物!件礼物的名字叫快乐。愿小朋友们每天高高兴兴地上学,快快乐乐地游戏。第二个礼物的名字叫礼貌,希望每个小朋友都做有礼貌的好孩子,会问好,会说再见,还会讲谢谢、对不起这些神奇的话。第三个礼物的名字叫能干,小朋友会自己的事情自己做,自己睡觉叠被子、自己穿衣穿袜子、自己吃饭擦桌子,做个能干的好孩子。第四个礼物的名字叫聪明,我们要养成爱读书爱学习的本领,变成一个真正聪明能干的人。请小朋友好好收藏这四件礼物,都做最棒的孩子。再过半年,我们大班的小朋友就要毕业了,请老师们放心,我们会好好学习,天天向上,给小弟弟小妹妹们做个好榜样!在这里祝愿小朋友们在新学期里学到的本领。谢谢大家!
篇一亲爱的老师、小朋友们:大家上午好!我是大三班的,很高兴能站在国旗下发言!我发言的主题是《我安全,我健康,我快乐》。今天我想提醒小朋友们注意4个方面的安全:一、注意在园安全早上入园、下午离园时一定要牵好爸爸妈妈的手,刷卡进园;上下楼梯扶栏杆,靠右走。户外活动时在老师视线范围内,不追逐打闹;使用剪刀等物品方法正确,用完还原。二、注意交通安全一个人的时候不到马路上、马路边奔跑玩耍;过马路要牵好大人的手,走斑马线;在十字路口,要做到红灯停、绿灯行;我们还要做个宣传员,提醒爸爸妈妈开车时遵守交通规则。三、注意家庭安全父母不在的时候,不能随便开门;不摸家里的插座、电器;不玩火、玩水,不随便攀爬。
导语:做个文明的人首先就是要尊重别人,对人要有礼貌,以下小编为大家介绍2月幼儿园国旗下讲话稿文章,欢迎大家阅读参考!2月幼儿园国旗下讲话稿1 尊敬的老师,亲爱的小朋友们,大家好!我是小一班的宋雨璇,我今天要和大家分享一件特别高兴的事情,幼儿园小朋友国旗下讲话稿。上周老师和爸爸妈妈都给我写了表扬信,表扬我长大了,自己的事情都能自己了做,夸我是一个生活小主人。在幼儿园里,我能够自己穿衣、吃饭。饭后,还能够自己把小盘小碗送回家,自己擦嘴漱口。中午睡觉的时候,我总是把小衣服叠的整整齐齐的上床睡觉,睡醒觉了,我也会把小枕巾整理好。每次上完厕所,我都会自己整理小衣服,有时还帮助小朋友呢。在家里,我不仅能够自己的事情自己做,还能够帮助爸爸妈妈做简单的事情。吃饭的时候,我能够把小碗小筷子摆放整齐,饭后,我还能帮爸爸妈妈擦擦小桌子。爸爸妈妈下班回家,我能够帮助他们拿拖鞋,捶捶背,爸爸妈妈可高兴了,夸我是一个懂事的乖宝宝。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。