下面是小编为大家整理收集的关于XX幼儿园秋季国旗下的讲话演讲稿,欢迎大家阅读,希望可以帮助到你。可以借鉴的哈。“励”是鼓舞,劝勉;“志”是关于将来要有所作为的意愿和决心,是有识之士的心愿。“励志”是激发文气,以求有所作为的意思。励志,首先要有志向,有高尚、远大的理想和明确的奋斗目标。少年周恩来在全班同学面前表明了自己的心迹:要“为中华之崛起而读书”,而当时与他同班的其他同学读书的目的是为明理、为做官、为挣钱、为吃饭,只是为了满足个人修养和生活的需要,而周恩来不愿意自己的民族再软弱,不愿意自己的同胞受欺辱,他把个人的学习与民族振兴的大业联系起来,立下远大志向,为祖国的兴盛而学习和奋斗,后来成为新中国的第一任总理,受到全国人民乃至世界各国人民的爱戴。可见,高尚、远大的理想和明确的奋斗目标对人一生的引领作用有多么巨大!其次,励志一定要有实践,要为实现志向而进行不懈的努力。明朝的宋濂,他就是我们浦江人,家境贫寒但自幼好学,向别人借书来看;冬天砚台里的墨汁结成了冰,手指冻僵了他也从不停止;成年以后,他背着经书到很远的地方去寻师求教,天气严寒,路途险恶,脚上的皮肤冻裂了都不知道;到了老师那里,耐心等待,虚心请教;生活清苦,他一天只能吃上两顿饭,没有鲜美的鱼肉,穿着破衣烂袄,生活在一群衣着华丽的纨绔子弟中间,却乐在其中,一点也不羡慕别人。他一生刻苦学习,后来成为了太子的老师,明朝“开国文臣之首”。
国旗下讲话不仅是升旗仪式的规定程序和内容,同时也是学校整个德育工作的重要组成部分。下面小编收集整理的资料。欢迎阅读参考!!XX幼儿园春季开学国旗下讲话稿 尊敬的老师们,亲爱的小朋友们:大家好!假期的余热还没有完全褪去,新的一个学期已经悄悄来临。今天,天格外蓝,风格外轻,水格外绿,人格外美,阳光也显得格外和煦。我站在主席台上,望着大家亲切的笑脸,我的心情无比高兴,也无比激动。在这美丽祥和的日子,我们芳汀幼儿园的全体教职员工、学生欢聚在这里,举行我园20xx年开学典礼,迎接充满希望的新学年。你们开心吗?我今天要告诉大家二个好消息。一是,今天我们幼儿园迎来了?位新的小朋友,让我们以热烈的掌声欢迎他们!二是,原来在幼儿园上学的小朋友都升班了,都当哥哥姐姐了,让我们拍拍手祝贺他们!新学期新面貌,、幼儿园为小朋友添置了新玩具、创设了优美的环境、老师们为小朋友设计了丰富多彩、妙趣横生的活动,厨房的叔叔阿姨为小朋友准备了营养丰富、味道鲜美的饭菜。希望小朋友每天高高兴兴地来幼儿园,吃得饱饱的、睡得香香的,开开心心地学习、游戏,你们将在这里学到很多很多的本领,成为聪明能干可爱的小博士!我们芳汀幼儿园的老师们会秉承教师爱的天职,像对待自己的孩子一样爱护每位小朋友,以园为家,努力把我们的孩子培养的更加健康、活泼、乐于提问、善于思考、敢于探索、团结互助、充满自信!为你小朋友们充满希望、繁花似锦的未来,做好学前教育的铺垫。 看啊,激动流露在我们每一个人的脸上,充溢在我们每个人心中,在未来无数充满温馨希望的日子,让我们在芳汀幼儿园温暖的家,一起快乐的游戏,认真的学习,健康的成长吧! 最后,送上我为幼儿园写的一首诗歌
小学生春节开学典礼国旗下如何讲话?下面小编收集整理的XX小学春季开学国旗下讲话稿资料。欢迎阅读参考!!XX小学春季开学国旗下讲话稿 各位老师,同学们:大家好!踏着春天的脚步,我们又步进了一个新的学期。今天我们隆重举行新学期的升旗仪式,在此,我向全体同学表示亲切的问候,向辛劳工作的全体老师们致以崇高的敬意!今天早上看到同学们背着书包走进校门的那一刻,我似乎同时看到了一个勇于开辟、善于创新、不断升华的市第七小学。过往的一学期是我们第七小学旅程中使人感动的出色一学期,我们学校顺利通过了省普九验收工作,学校环境办学水平有了质的奔腾,师生的精神面貌发生了天翻地覆的变化.顺利通过了农远检查验收,并取得了农远示范校的光荣称号.我校还代表市教育局接受了铁岭市的校务公然检查,并遭到了好评。在期末全局数学教学成绩抽测中,我校四年级取得全市第四名,同类学校第一位的好成绩.我们的运动员参加市运动会荣获了全市同类学校第一位的好成绩,这些成绩是我们学校的光荣,是同学们的自豪。
春季秀气开学了,小学生在国旗下做了讲话。下面小编收集整理的XX小学春季开学国旗下讲话资料。欢迎阅读参考!!XX小学春季开学国旗下讲话 各位老师,同学们:大家好!准备好了吗在庄严的国歌声中,又一个崭新的学期向我们敞开了大门。冉冉上升的五星红旗严肃地提问:同学们,面对新学期,你们准备好了吗?在心中,我们响亮而坚定地回答:准备好了!“我们树立起远大的志向”。用聪明才智描绘祖国美好的明天,是我们崇高的理想。我们用汗水浇灌希望的种子,我们用热情点燃理想的明灯。在新世纪无垠的沃野上,我们是奋蹄的骏马,在祖国辽阔的晴空里,我们是展翅的雏鹰。“我们培养成高尚的品德”。我们追求真善美,摒弃假恶丑,热爱祖国,关心集体,团结同学,助人为乐,《小学生日常行为规范》和《小学生德育规程》规范着我们的言行。“我们掌握着过硬的本领”。我们勤于学习,善于动脑,乐于动手,以自主为快乐,以创新为光荣,以创造为自豪,积累丰富的知识,培养求异的精神,锻炼实践的能力,形成良好的习惯。
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
文章导读:亲爱的同学们,当你沉浸于新年的欢乐之中时,请不要忘记即将到来的期末考试,更不要忘了新的一年应该有新的目标,新的人生起点。XX年展开的这张新的画卷正等着你去精彩地描绘呢......亲爱的同学们:过完了三天假期,我们已告别了不平凡的XX年,又迎来了充满希望的。迎着朝阳的光辉,我们再一次凝望冉冉升起的国旗;踏着岁月的脚步,我们又一次走到了憧憬希望的起点。在此,让我谨代表学校向全体老师向同学们送上诚挚的新年祝福。同学们,你们知道1月1日又称什么节日吗?那“元旦”这一节日又包含着什么深意呢?“元”是开始,第一之意;“旦”是早晨,一天之意。
2、工作人员必须无传染病,全体工作人员每三个月做一次咽拭子细菌培养,带菌者未治愈不得入内,非本室工作人员严禁入内,NICU谢绝参观,家属在规定的时间,且患儿病情相对稳定,穿戴一次性参观衣、帽、鞋套方可入世探视。3、工作人员入室前应穿好室内工作衣,更换专用鞋,每次护理婴儿前后要洗手。
活动目标: 1、知道自己身体的不同部位的不同作用,学习运用身体不同部位移动身体,提高身体的灵活性和身体动作的表现力。 2、引导幼儿积极探索新的动作,从不同角度思考,独立或合作设计完成动作要求,发展幼儿创新技能。 3、在活动中让幼儿体验游戏的乐趣,培养合作互助的精神。 活动准备:音乐磁带、各类数字卡装扮的数字园,固定1.4米高的绳索,以山坡(上、下)、小河、雷区,电网的标志图分放在绳索下的场地上。 活动重点:想办法运用不同部位移动身体 活动难点:设计并完成脚不沾地移动身体。 活动过程: 一、准备活动 1、在音乐伴奏下指导幼儿进行走、跑、跳、蹲、扭动身体、钻、爬等基本动作训练。 2、情景导入:“我们的小脚累了,让它们休息一下吧。”幼儿自由地在教师身边坐下。 3、提出问题:“刚才我们都用了身体哪些部位做了什么动作?”(脚走跑、腿弯、屈膝、手动、腰弯、臀扭等) 师生共同小结:身体真灵巧,脚能走,腰能弯,手能撑……
1.以人为本,预防为主。把保障人民群众生命安全作为首要任务,最大限度地减少突发事件对人民生命的威胁和危害。完善各项工作机制,防患于未然。2.统一领导,分级负责。各部门在指挥部统一领导下,具体负责落实各自应急处置工作的各项事项。3.系统联动,资源整合。按照条块结合的要求,充分依靠和利用各相关部门应急指挥机构、人员、设备、物资、信息等资源的协助作用。4.快速反应,协同配合。建立健全处置突发事件的快速反应机制,一旦出现突发事件,快速反应,科学应对。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。