作业二(一)、作业内容情境探究、互联网将地球缩成一张小小的“网”。在这张“网”里,我们可 以发布信息、浏览新闻、结交好友等,为我们的人际交往扩展了新通道。情境一 中学生小强在一个论坛上认识了小胡,他们在很多问题上看法一致, 很快成为无话不谈的好朋友。经常彻夜长谈兴趣爱好、闲聊家庭状况、相约打游 戏。 有一天,小胡邀请小强一起去参与网络赌博,小强犹豫了。(1)请运用《网上交友新时空》的相关内容,结合材料,谈一谈:对于这样的网 友,小强应该怎样做?情境二 小强拒绝小胡以后,开始找借口疏远小胡。小胡察觉后,开始“变脸” 邮寄各种恐吓信和物品到小强家。小强忍无可忍选择了报警。(2)小强的网络交往经历,给我们中学生参与网络交往哪些建议?
(四) 作业分析与设计意图通过本题引导学生认识到网上交友的积极影响,认识到网上交往的弊端和网 络交友应慎重,需要考虑对自己学习和生活的影响,学会理性辨别、慎重选择。 引导学生正确看待网上交友与现实交友。本题难度适中,领悟到材料意思,把握 书本重难点知识,即可做出正确选择。本题意在帮助中学生辩证认识网上交友给他们的生活带来的影响,既看到互 联网对交友的积极影响,也看到互联网对交友的消极影响;提示学生在网上交友 要具有自我保护意识,要慎重对待网上朋友转化为现实中的朋友;鼓励学生学会 在现实中与同伴交往。六、单元质量检测( 一) 单元质量检测内容一、单项选择题1.在友谊的长河里,我们深深浅浅地跋涉着,经历着不同的体验,积累着各自的 感受。检视自己对友谊的认识,下列观点正确的是 ( )A. 竞争必然伤友谊,要寻求合作避免竞争B. 学会接受友谊淡出,坦然接受新的友谊C. 朋友应相互帮助,考试递小抄可以理解D. 帮助朋友教训某人,哥们儿义气必不可少
选择题1.打开网页,你可以看新闻、听音乐、玩游戏、交朋友、查资料、购 物、学习等。这从一个侧面说明了 ( )A.网络可以实现我们的一切愿望B.网络交往成为我们生活中不可缺少的部分C.网络生活很丰富D.网络交往是把锋利的双刃剑2. 只要上网,就等于与世界握手。看新闻,办商务、结交朋友、求医 问药、不用舟车劳顿,不用费事周折。这一切说明 ( )A.网络使交流便利,却使人的思想退化B.网络给了很多人可以偷懒的机会C.人们的交往都必须依赖于网络D.网络生活很丰富,网络沟通无极限非常方便、快捷。这说明 ( )A.网络交往超越了空间B.网络交往提高了人们社会活动的质量C.网络交往有利无弊D.网络交往改变了我们的人生价值4.比尔 ·盖茨曾说过:“你甚至不知道和你交流的对方是一条坐在电脑 前会敲击键盘的狗。 ”这说明 ( )3.在小明的众多网友中,有大学生、参加兴趣班的朋友、同学和老师。学习之余,他经常上网聊天;遇到问题,他会在网上向同学和老师请教,
(一)课标要求在 2022 年课标中,要求学生能够与他人进行有效沟通。树立正确的合作与 竞争观念, 真诚、友善, 具有互助精神。 引导学生了解积极交往的意义, 树立主 动交往意识, 积极树立以同情、关爱、道义为基础的友谊。引导学生在交往中积 极践行真诚、友善和互助精神, 提高交往能力,学会处理与自我、他人和集体、 国家和社会等方面关系, 营造良好和谐的人际关系。 了解青春期闭锁心理现象及 危害, 积极与同学、朋友和成人交往, 体会交往与友谊对生命成长的意义。学会 用恰当的方式与同龄人交往, 建立同学间的真诚友谊, 正确认识异性同学之间的 交往与友谊, 把握原则与尺度。知道每个人在人格和法律地位上都是平等的, 做 到平等待人, 不凌弱欺生, 不以家境、身体、智能、性别等方面的差异而自傲或 自卑, 不歧视他人, 富有正义感。合理利用互联网等传播媒介, 初步养成积极的 媒介批评能力,学会理性利用现代媒介参与社会公共生活。
(1) 请结合所学知识,谈谈你对“幸福、幸运”的理解。【看法二】小李:“我最近和好朋友发生了矛盾,考试时他问我答案,我拒绝 了他,他很生气。拒绝给他答案,我这样做是不是做错了?我感觉我们两个 人已经渐行渐远了,我该怎么办?”(2) 面对小李的苦恼,你会如何开导、安慰他?【看法三】小王:“我身边很多同学都是通过送礼物、花钱请吃饭来巩固友情 的,要不我也模仿他们吧。”(3) 花钱请客吃饭能买到真正的友谊吗?请运用所学知识谈谈你的理解。12. (原创题)阅读材料,回答下列问题。七年级学生肖楠在交友遇到了很多困扰:困扰一:我发现好朋友小鹏愁眉苦脸,关心地上前询问原因,可小鹏怎么也 不肯说,还对我很不耐烦。困扰二:我和网友轻舞飞扬在网上认识一年多,很投缘,他想要我的照片, 想知道我的姓名、学校、家庭住址等信息,还想约我周末见面。
A.因为朋友,我们感受到自己的价值B.因为朋友,我们感受到友谊的力量C.因为朋友,我们获得了更多的荣誉D.因为朋友,我们会乐于并尝试学习9.朋友之间需要忠诚和信任,但是,这并不意味着朋友之间就应该毫无保留。我们关心和帮助朋友,但不要替朋友作决定。由此可见 ( )A.呵护友谊,需要给对方一些空间B.呵护友谊,需要用心体会对方的需要C.冲突发生时,要相互协调和宽容D.友谊的力量让我们得到健康的成长10.七年级的乐乐同学迷上网络游戏后,学习成绩一落千丈。他从此变得孤僻,不爱说话,易发脾气。后来,他的同桌亮亮与他交往,和他做朋友,他们经 常一起做作业、讨论问题,一起打球。乐乐慢慢远离网络游戏,学习勤奋了,有进步了,性格变得开朗了。这一事例表明 ( )A.友谊帮助我们认识和改正自己言行中的缺失,使人进步B.友谊使人远离网络C.朋友可以改变人的一切D.朋友使我们对任何事情都敢去尝试
( 一) 活动步骤1.全班分为4 各小组:绘画组, 日记组,网络组,实践组。每个小组设置 1 名小组长。 我列出了四项作业供每个学习小组选做,之后课上分享展示学习成果。(1) 调查中学时代对一个人的重要性或者人生影响 (可以调查周围的亲朋好友 也可以调查小区的人) 。调查结果写心得体会或者写报告,深刻认识到中学时代 对一个人的重要性。 (实践组)(2) 走出安逸区,真正的成长是有艰辛和汗水造就的,列出自己的目标、学习 习惯的行动和计划。对自己的学习习惯进行深刻分析后制订了习惯养成计划表, 每天对照执行。学生可以请求同学和家长经常提醒、监督自己,以养成良好的习 惯,改正缺点,做更好的自己,实现自己的目标。 (绘画组)(3) 编写自己的成长手册 (自评、他评、老师评价) ,记录你的奋斗目标你的 想法和创意,让他见证和助推你的成长。 ( 日记组)(4) 负责记录,拍照,将活动内容传到 QQ 群里,写这一单元的活动小报。 (网 络组)(二) 时间要求:15 分钟
2学情分析本课属于“造型.表现”,学习领域。可爱幽默的动漫形象渗透了具象的造型知识,培养了学生的创新精神,丰富着孩子们的美好童年回忆。本课介绍了几种不同表现形式的动漫形象。联系生活原型与动漫形象,告诉学生动漫形像来源于现实生活,并通过文字和示范讲述动漫行象的造型手法(拟人化、变形、夸张等),引导学生大胆绘制简单的动漫形象。3 重难点1、教学重点:让学生了解动漫的风格,主要的设计手法,激发学生丰富的想象力,绘制出幽默、夸张、富有童趣的动漫形象。2、教学难点:让学生运用拟人、夸张、添加、变形、写实等方法,画出动漫形象
2学情分析可以说动漫卡通一直伴随着孩子们的成长,每个孩子都十分喜爱看动漫卡通,尤其是现在的儿童更是在动漫卡通世界里成长的一代,所以学生对动漫卡通形象并不陌生。本课通过大量学生喜欢的动漫卡通形象的欣赏,掌握动漫卡通画形象的创作表现方法。3重点难点教学重点:感受动漫卡通形象灵动多变的造型之美,并体会创作的乐趣。教学难点:利用学到的知识,进行动漫卡通形象表现。
2学情分析四年级的学生正处于素质教育的阶段,学生对美术正逐步深入了解,并掌握了一些美术基础知识和基本技能,多数同学对美术兴趣浓厚,有较强的求知欲和教强的创新力,学生的美术素质得到进一步提高。3重点难点教学重点:让学生从大自然和生活的万物中发现线条的几种变化,发现圆点在纸上的不同位置产生的不同感觉。
1、通过欣赏各式各样的帽子的基本结构和作用。了解帽子制作的基本过程。2、通过教学是学生初步掌握装饰的基本方法(折、剪贴、插接、镂空等),提高他们的语言表达能力。3、教师鼓励学生积极参与游戏和制作,努力使自己的帽子与众不同,体验制作过程的乐趣。3学情分析从学生掌握知识的角度看,他们已经掌握了基本的手工制作方法,而本学期学生通过了前面的剪纸的练习,这使他们的动手能力进一步提高,因此为本课打下了良好的基础。从学生的特征看,这个年龄段的孩子对手工有着浓厚的兴趣,喜欢尝试制作新奇的东西。但部分基础差的同学缺乏耐性和信心。教师对于这种情况,可利用优秀作品为参照物激发其灵感,鼓励创作。
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
由样本相关系数??≈0.97,可以推断脂肪含量和年龄这两个变量正线性相关,且相关程度很强。脂肪含量与年龄变化趋势相同.归纳总结1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r来检验线性相关显著性水平时,通常与0.75作比较,若|r|>0.75,则线性相关较为显著,否则不显著.例2. 有人收集了某城市居民年收入(所有居民在一年内收入的总和)与A商品销售额的10年数据,如表所示.画出散点图,判断成对样本数据是否线性相关,并通过样本相关系数推断居民年收入与A商品销售额的相关程度和变化趋势的异同.
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
二、典例解析例4. 用 10 000元购买某个理财产品一年.(1)若以月利率0.400%的复利计息,12个月能获得多少利息(精确到1元)?(2)若以季度复利计息,存4个季度,则当每季度利率为多少时,按季结算的利息不少于按月结算的利息(精确到10^(-5))?分析:复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息.所以若原始本金为a元,每期的利率为r ,则从第一期开始,各期的本利和a , a(1+r),a(1+r)^2…构成等比数列.解:(1)设这笔钱存 n 个月以后的本利和组成一个数列{a_n },则{a_n }是等比数列,首项a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12个月后的利息为10 490.7-10^4≈491(元).解:(2)设季度利率为 r ,这笔钱存 n 个季度以后的本利和组成一个数列{b_n },则{b_n }也是一个等比数列,首项 b_1=10^4 (1+r),公比为1+r,于是 b_4=10^4 (1+r)^4.
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
我们知道数列是一种特殊的函数,在函数的研究中,我们在理解了函数的一般概念,了解了函数变化规律的研究内容(如单调性,奇偶性等)后,通过研究基本初等函数不仅加深了对函数的理解,而且掌握了幂函数,指数函数,对数函数,三角函数等非常有用的函数模型。类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规律的数列,建立它们的通项公式和前n项和公式,并应用它们解决实际问题和数学问题,从中感受数学模型的现实意义与应用,下面,我们从一类取值规律比较简单的数列入手。新知探究1.北京天坛圜丘坛,的地面有十板布置,最中间是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的示板数依次为9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型号的女装上对应的尺码分别是38,40,42,44,46,48 ②3.测量某地垂直地面方向上海拔500米以下的大气温度,得到从距离地面20米起每升高100米处的大气温度(单位℃)依次为25,24,23,22,21 ③
二、典例解析例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请确定d的范围.分析:该设备使用n年后的价值构成数列{an},由题意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}为公差为-d的等差数列.10年之内(含10年),该设备的价值不小于(220×5%=)11万元;10年后,该设备的价值需小于11万元.利用{an}的通项公式列不等式求解.解:设使用n年后,这台设备的价值为an万元,则可得数列{an}.由已知条件,得an=an-1-d(n≥2).所以数列{an}是一个公差为-d的等差数列.因为a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由题意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范围为19<d≤20.9
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。