解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
2.思考下列问题,师生共同探讨交流。(1)题为“昆明的雨”,文章开篇为什么要描述给宁坤的画呢?明确:所画的是昆明雨季特有的仙人掌、菌子、花,既能突出昆明多雨的特点,又可引出下文对“昆明的雨”具体的描述,自然地引出“我想念昆明的雨”。(2)昆明的雨与别处的雨有何不同,让作者如此念念不忘?请圈画出最能概括其特点的句子。明确:昆明的雨季是明亮的、丰满的,使人动情的。目标导学三:细读课文,整体感知1.品读课文,探讨问题。(1)这样明亮又丰满的雨季自然是使人动情的。你体会到作者怎样的情感?明确:怀念、喜爱、乡愁。(2)你是从文中哪些词句之中体会出作者的这种感情的?明确:结合具体的写雨、物、人等的句子,让学生理解作者想念的不仅仅是“雨”,还有物、景、人、事,想念的是昆明的民风、人情和当年在那里的宁静、恬然的生活。
目标导学二:体会写景技巧1.第一段作者用什么写作手法写出济南冬天“温晴”的天气特点,有何好处?通过和北平冬天多风、伦敦多雾、热带日光的毒和响亮(根据语境是指“晴朗得刺眼”)作对比,写济南冬天无风声、无重雾、无毒日的“奇迹”“怪事”,突出它独有的“温晴”美景,赞赏它是个“宝地”。2.第3自然段描写薄雪覆盖下的山,运用了移步换景的手法,请你简要分析。作者运用移步换景的手法,从山上的矮松写到山尖、山坡和山腰的薄雪,自上而下,把雪的光、色、态逐步展现在读者面前,表现济南冬天的秀美。3.最后一段描写水色,运用了哪些手法?有什么好处?(1)衬托手法:作者描写绿萍的绿、水藻的绿、水面柳影的绿,衬托出水绿。(2)联想手法:由水的绿联想到绿的精神,联想到春意盎然的生机。(3)化动为静:运用拟人修辞,写水藻“把终年贮蓄的绿色全拿出来”,写“水也不忍得冻上”,突出水清、水暖的特点。
目标导学二:细读课文,把握人物形象作为一个科研工作者,尤其是在极度艰苦的工作环境下,想要获得成功不仅需要技术上的努力,更需要这位伟大的科研工作者集一切美好的品质于一身,居里夫人无疑就是这样的一个典型。请你细读文章,找到表现居里夫人人格魅力的句段,探究居里夫人的精神品格。明确:(1)对科学事业诚挚的热爱。“工作日变成了工作月,工作月变成了工作年,比埃尔和玛丽并没有失掉勇气。这种抵抗他们的材料迷住了他们。”其中的“迷住”一词突出表现了居里夫人对科学的痴迷和挚爱。(2)无惧一切困难,敢于将想法付诸实践。“最困难的,或者说几乎不可能的,乃是离析这极小含量的物质,使它从与它密切混合着的杂质中分离出来。”居里夫人选择最困难的工作,付出艰苦的劳动。(3)持之以恒、不轻言放弃。“工作日变成了工作月,工作月变成了工作年。”在这日复一日、年复一年的工作中,居里夫人终于提炼出了镭。
这一句议论,呼应前文的记叙——母亲教“我”生产的知识,同情革命、支持革命,让“我”养成革命的意志。这些都是“我”感谢母亲的重要原因。“母亲是一个平凡的人,她只是中国千百万劳动人民中的一员,但是,正是这千百万人创造了和创造着中国的历史。”母亲勤苦一生,任劳任怨,反抗地主豪绅的欺压,坚强不屈,母亲就是一位普普通通的农妇,她是“平凡的”,但正是像母亲这样的千百万劳动人民,融汇成革命的洪流,推动着历史的发展,为我们的民族做出了不可磨灭的贡献,中国的现在、未来都将是劳动人民的。这句议论,将对母亲的深情与对民族、对广大劳动人民的深情融汇在一起。
目标导学三:拓展理解1.几十年后,回忆起母亲,史铁生写下了这么一段话,请读一读,说说你读出了作者怎样的情感。那时的我,作为她的儿子,还太年轻,还来不及为母亲着想,我被命运击昏了头,一心以为自己是世上最不幸的一个,不知道儿子的不幸在母亲那儿总是要加倍的。她有一个长到二十岁上忽然截瘫了的儿子,这是她唯一的儿子;她情愿截瘫的是自己而不是儿子,可这事无法代替;她想,只要儿子能活下去哪怕自己去死呢也行,可她又确信一个人不能仅仅是活着,儿子得有一条路走向自己的幸福的路;而这条路呢,没有谁能保证她的儿子终于能找到——而这样的母亲,注定是世界上活得最苦的母亲。我感受到:作者对母亲的怀念、思念之情;作者对母亲的忏悔、懊悔、后悔、悔恨之情;作者对母亲的自责、内疚之情;作者自己的成长,完全理解母亲了……2.阅读课后练习四史铁生《我与地坛》中的同样是写母亲一段文字,说说它与课文在写法上有何不同。
分析:“褴褛”一词是对于勒的外貌描写,点明他生活的贫困,处境的艰难。②他又老又脏,满脸皱纹,眼光始终不离开他手里的活儿。分析:再次描写于勒的外貌,充分说明他历尽磨难,饱经沧桑,穷困潦倒。③我看了看他的手,那是一只满是皱纹的水手的手。我又看了看他的脸,那是一张又老又穷苦的脸,满脸愁容,狼狈不堪。分析:第三次描写于勒的外貌,准确地表现出他此时的穷困潦倒,暗示他不幸的遭遇,竭力渲染他的悲惨境地。2.本文通过神态、语言、动作描写揭示人物心理活动,刻画人物性格,找出这些句子来进行分析。明确:菲利普认出卖牡蛎的穷水手就是于勒时,“突然好像不安起来”,这是心理骤然紧张所致;“他向旁边走了几步”,是想躲开于勒的目光,怕于勒认出自己来;“瞪着眼”看女儿、女婿,是怕他们察觉出这个秘密。这一系列神态、动作描写,层次分明地写出了人物紧张、恐慌以至失魂落魄的心理状态。
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
方法总结:观察表中的数据,发现其中的变化规律,然后根据其增减趋势写出自变量与因变量之间的关系式.三、板书设计1.用关系式表示变量间关系2.表格和关系式的区别与联系:表格能直接得到某些具体的对应值,但不能直接反映变量的整体变化情况;用关系式表示变量之间的关系简单明了,便于计算分析,能方便求出自变量为任意一个值时,相对应的因变量的值,但是需计算.本节课的教学内容是变量间关系的另一种表示方法,这种表示方法学生才接触到,学生感觉有点难.这节课的重点是让学生掌握用关系式与表格表示变量间的关系,难点是理解这两种表示方法的优缺点.就此问题,通过让学生对几个例子比较、讨论、总结、归纳两种方法的优点来解决,这样学生就能很好地区分这两种表示方法,并能对不同的问题选择恰当的方法
解:(1)电动车的月产量y为随着时间x的变化而变化,有一个时间x就有唯一一个y与之对应,月产量y是时间x的因变量;(2)6月份产量最高,1月份产量最低;(3)6月份和1月份相差最大,在1月份加紧生产,实现产量的增值.方法总结:观察因变量随自变量变化而变化的趋势,实质是观察自变量增大时,因变量是随之增大还是减小.三、板书设计1.常量与变量:在一个变化过程中,数值发生变化的量为变量,数值始终不变的量称之为常量.2.用表格表示数量间的关系:借助表格表示因变量随自变量的变化而变化的情况.自变量和因变量是用来描述我们所熟悉的变化的事物以及自然界中出现的一些变化现象的两个重要的量,对于我们所熟悉的变化,在用了这两个量的描述之后更加鲜明.本节是学好本章的基础,教学中立足于学生的认知基础,激发学生的认知冲突,提升学生的认知水平,使学生在原有的知识基础上迅速迁移到新知上来
方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.三、板书设计1.等腰三角形的性质:等腰三角形是轴对称图形;等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴;等腰三角形的两个底角相等.2.运用等腰三角性质解题的一般思想方法:方程思想、整体思想和转化思想.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计1.三角形按边分类:有两边相等的三角形叫做等腰三角形,三边都相等的三角形是等边三角形,三边互不相等的三角形是不等边三角形.2.三角形中三边之间的关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既增加了学习兴趣,又增强了学生的动手能力
解析:根据AB∥CD,∠ACD=120°,得出∠CAB=60°.再根据尺规作图得出AM是∠CAB的平分线,即可得出∠MAB的度数.解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺规作图知AM是∠CAB的平分线,∴∠MAB=12∠CAB=30°.方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM是∠BAC的角平分线是解题的关键.三、板书设计1.角平分线的性质:角平分线上的点到这个角的两边的距离相等.2.角平分线的作法本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练
方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、板书设计1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(等角对等边).2.反证法(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.解决几何证明题时,应结合图形,联想我们已学过的定义、公理、定理等知识,寻找结论成立所需要的条件.要特别注意的是,不要遗漏题目中的已知条件.解题时学会分析,可以采用执果索因(从结论出发,探寻结论成立所需的条件)的方法.
[补充]:郑州是特大城市,我们对灯火通明的夜晚都有深刻的体会,我们都体会过光给他们带来的好处,而对过多过亮的光带来的危害则很少认真地思考过,且光污染给都市人们和其他生物和环境带来的不利影响也越来越大,所以,我在这儿给同学们补充光污染,目的是提醒他们要增强环保意识,要理解城市在建设过程中要减少城市各类活动对环境的污染;另外,随着城市的不断发展,还可能会产生新 的污染物。还培养了学生用发展的眼光来看世界。[思考]:如何降低城市化对地理环境产生的影响?[答]:发展生态城市,使人工环境和自然环境和谐统一起来。一方面在城市建设中,要发展低污染的节能建筑和绿色交通,减少城市各类活动对环境的污染;另一方面使城市景观尽可能地与山、河、湖、海、植被等自然景观保持协调,建立一种良性循环。
一、知识与技能1、知道伽利略的理想实验及其主要推理过程和推论,知道理想实验是科学研究的重要方法2、理解牛顿第一定律的内容及意义;理解力和运动的关系,知道物体的运动不需要力来维持。3、理解惯性的概念,知道质量是惯性大小的量度;会用惯性解释一些现象。二、过程与方法1、观察生活中的惯性现象,了解力和运动的关系2、通过实验加深对牛顿第一定律的理解3、理解理想实验是科学研究的重要方法三、情感态度与价值观1、通过伽利略和亚里士多德对力和运动关系的不同认识,了解人类认识事物本质的曲折性2、感悟科学是人类进步的不竭动力[教学重点]1、理解力和运动的关系2、对牛顿第一定律和惯性的正确理解3、理想实验[教学难点]1、力和运动的关系2、惯性和质量的关系[课时安排]1课时[教学过程][引入]
一、知识与技能1、知道伽利略的理想实验及其主要推理过程和推论,知道理想实验是科学研究的重要方法2、理解牛顿第一定律的内容及意义;理解力和运动的关系,知道物体的运动不需要力来维持。3、理解惯性的概念,知道质量是惯性大小的量度;会用惯性解释一些现象。二、过程与方法1、观察生活中的惯性现象,了解力和运动的关系2、通过实验加深对牛顿第一定律的理解3、理解理想实验是科学研究的重要方法三、情感态度与价值观1、通过伽利略和亚里士多德对力和运动关系的不同认识,了解人类认识事物本质的曲折性2、感悟科学是人类进步的不竭动力[教学重点]1、理解力和运动的关系2、对牛顿第一定律和惯性的正确理解3、理想实验[教学难点]1、力和运动的关系2、惯性和质量的关系
方法总结:绝对值小于1的数也可以用科学记数法表示,一般形式为a×10-n,其中1≤a<10,n为正整数.与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数前面的0的个数所决定.【类型二】 将用科学记数法表示的数还原为原数用小数表示下列各数:(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法总结:将科学记数法表示的数a×10-n还原成通常表示的数,就是把a的小数点向左移动n位所得到的数.三、板书设计用科学记数法表示绝对值小于1的数:一般地,一个小于1的正数可以表示为a×10n,其中1≤a<10,n是负整数.从本节课的教学过程来看,结合了多种教学方法,既有教师主导课堂的例题讲解,又有学生主导课堂的自主探究.课堂上学习气氛活跃,学生的学习积极性被充分调动,在拓展学生学习空间的同时,又有效地保证了课堂学习质量
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。