(一)导入新课三角形全等的判定中AA S 和ASA对应于相似三 角形的判定的判定定理1,SAS对应于相似三 角形的判定的判定定理2,那么SSS 对应的三角形相似的判定命题是否正确,这就是本节研究的内容.(板书)(二) 做一做画△ABC与△A′B′C′,使 、 和 都等 于给定的值k.(1)设法比较∠A与∠A′的大小;(2)△ABC与△A′B′C′相似吗?说说你的理由.改变k值的大小,再试一试.定理3:三边:成比例的两个三 角形相似.(三)例题学习例:如图,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度数.解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三边成比例的两个三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、巩固练习四、小结本节学 习了相似三角形的判定定理3,使用时一定要注意它使用的条件.
当Δ=l2-4mn<0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个点P;当Δ=l2-4mn=0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的两个点P;当Δ=l2-4mn>0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的三个点P.方法总结:由于相似情况不明确,因此要分两种情况讨论,注意要找准对应边.三、板书设计相似三角形判定定理的证明判定定理1判定定理2判定定理3本课主要是证明相似三角形判定定理,以学生的自主探究为主,鼓励学生独立思考,多角度分析解决问题,总结常见的辅助线添加方法,使学生的推理能力和几何思维都获得提高,培养学生的探索精神和合作意识.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.三、板书设计用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步骤①化为一般形式②确定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判别式经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解求根公式的基础.通过对求根公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.体会数式通性,感受数学的严谨性和数学结论的确定性.提高学生的运算能力,并养成良好的运算习惯.
首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.
二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况
(1)填写表格中次品的概率.(2)从这批西装中任选一套是次品的概率是多少?(3)若要销售这批西装2000件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装?六、课堂小结:尽管随机事件在每次实验中发生与否具有不确定性,但只要保持实验条件不变,那么这一事件出现的频率就会随着实验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值。七、作业:课后练习补充:一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球与10的比值,再把球放回袋中摇匀。不断重复上述过程5次,得到的白求数与10的比值分别为:0.4,0.1,0.2,0.1,0.2。根据上述数据,小亮可估计口袋中大约有 48 个黑球。
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
尊敬的老师,亲爱的同学们:大家早上好!今天我国旗下讲话的题目是:“享受拼搏、奋斗人生,高三,加油!”青春是用意志的血滴和拼搏的汗水酿成的琼浆——历久弥香;青春是用不凋的希望和不灭的向往编织的彩虹——绚丽辉煌;青春是用永恒的执著和顽强的韧劲筑起的一道铜墙铁壁——固若金汤。再有一个月,高三的学长学姐就要参加一场庞大的战役。高考,人生征途中最激动人心的驿站之一。高考,一场肉体与灵魂的挑战,这是一场坚韧与顽强的挑战。高考,九百多天的拼搏,在那一刻沉淀。这二十多天的磨剑,将在那一刻辉煌!积极进取,永不言弃,和谐共进,力争第一!过去三年,是辉煌,是惨淡,都已过去。高三是寂寞的一年,那是没有宁静和闲适的一年;高三又是不寂寞的一年,那是一颗年轻热火的心,那是一条艰难曲折的路,那是一个全新发着光的未来!
敬爱的老师们、亲爱的同学们:清晨,我们相聚在此,能够站在国旗下讲话,我感到很荣幸,谢谢老师给了我这样一个宝贵的机会,今天,我要演讲的题目是《让我们迎接期末考试的到来》!有这样一首歌大家听过吗:“阳光总在风雨后,乌云上有晴空,珍惜所有的感动,每一份希望在你手中。”这首歌的名字大家应该很熟悉,叫做《阳光总在风雨后》。生活就是如此,不经历风雨,怎么能见到彩虹?那么我们不经历期末考试,怎能知道我们学习的效果?怎能知道我们的成绩是什么?期末考试就快临近了,我们都进入了紧张的备考阶段,同学们,你们做好准备了吗?在这里,我想给大家提点建议,有不足之处,请大家批评指正。第一,与时间赛跑。时间就是生命,时间就是一切,也许一分钟的时候不能给你带来一分的成绩,但是一分钟的时间,绝对可以给你带来一点一滴的进步。在历史的长河中,时间是最公正的,但也是最短暂的,只有争分夺秒去努力,只有与时间赛跑,我们的成绩才会有更多的进步,期末考试才会变得轻松自在。
一、单项选择题1.C 此题考查生命的特点,AD 选项前面说的都对,但是后面说的都不对。因为: 人生难免风险、挫折和坎坷,是逃离不了的,拒绝不了的。生命是独特的,不能 相互替代,所以 B 也是错的。C 符合题意正确。 2.①②③都体现对生命的尊重和敬畏,而④表达的是一种消极避世的人生态度 ; 因此错了。所以,正确答案 D。3.最美逆行不是没有安全意识,相反,他们能做到敬畏生命,坚持生命至上。因 此,②选项错了,其他选项都符合题意。所以正确答案是 D。4. (1) 主题是:敬畏生命(2) 图 1,祭奠生命,表达对逝者的追悼和怀念。这么做是为了悼念生命,体 现对生命的尊重,体会生命之间是息息相关的。图 2,生命是崇高的、神圣的,是任何代价都换取不来的。我们对生命要有一种 敬畏的情怀。
①②③分析题干中,我们生命的意义不在于长短,而在于对社会的贡献,将个体生 命和国家的甚至人类的命运联系在一起时,生命就会闪耀出伟大,活出自己的精彩,让 生命更加绚烂,故①②③说法符合题意;④“追求生命个性和韧性”说法不符合主题故 ④说法错误;2.C【设计意图】该题考查呵护食品安全,珍爱生命。 ④说法虽然正确的,但是主体不符,不是市民的做法。故不能入选。 3.A【设计意图】本题考查对生命的传承。①②④材料中的话意在告诉我们,在人类生命的接续中,我们应该为自己的生命找 到一个位置,担当一份使命;在生命的传承关系中,我们应该正确认识和面对自己的生 命;我们每个人都不仅仅是在身体上接续祖先的生命,也在精神上不断继承和创造人类 的文明成果,故①②④说法正确;③生命属于我们每个人,生命的接续和发展与我们每 个人息息相关,故③说法错误。
B 等级——较积极参与采访活动;采访思路较清晰,记录较完整;能对自己的生 命观、价值观有所反思;能主动展示心得体会。C 等级——基本上能参与采访活动,遇到困难会想放弃;记录信息较少,只有少 量与主题有关;对自己生命观、价值观理解不深;有一点成果反馈,内容过于简 单。总体评价结果: (四) 作业分析与设计意图这是一项基于素质教育导向的整体式课时作业设计,以培养学生核心素养为 目标。作业以学生的“生命故事访谈”为主要情境,以填写活动记录的形式呈现。 教师从“参与态度、思想认识”等四个维度对作业进行评价,以“优秀、 良好、 合格”三个等级呈现。本次实践性作业是访谈型作业,课前采访希望通过学生的 参与,一方面锻炼学生的人际交往能力和口头语言表达能力,另一方面扩展学生 的生活阅历,从他人的精彩故事中获得启示,激发学生对生命的热情,树立正确 的人生观,同时也为下一框题的“平凡与伟大”提供教学素材,活出自己生命的 精彩。
2.内容内在逻辑本课由引言和两框内容组成。引言开宗明义,指出人的成长离不开社会,意在告诉 学生,社会性是人的根本属性,离开社会提供的物质和精神支持,个人就是无源之水、 无本之本。因此,要把社会当作成长的课堂,在其中学习、锻炼、发展,这是成长的必 经之路。第一框“我与社会”,从中学生自身生活经验入手,引导学生在体验社会丰富多彩 的同时,认识到随着身体的发育、智力的提高、能力的增强,对社会生活的感受越来越 丰富,认识越来越深刻,进而认识到“我”与社会的关系,理解“我”是社会中的一分 子,在社会交往中建立了各种社会关系,进而获得不同的社会身份,扮演不同的社会角 色,承担相应的社会责任。第二框“在社会中成长”,引导学生结合个人经验探究社会对个人成长的支持和帮助,认识人的成长是不断社会化的过程,养成亲社会行为对个人成长的重要意义并努力 践行。(三) 学情分析初中学生处于由儿童向青年过渡的生理发育期和精神成长期,学校教育应帮助学生 正视自己所处的人生阶段,引导其“过积极健康的生活,做负责任的公民”。
(一) 课标要求本课所依据的课程标准的相应部分是“成长中的我”中的“自尊自强”。具体 相对应的内容标准是: “自尊、自爱,不做有损人格的事。”“能够分辨是非善 恶,学会在复杂的社会生活中作出正确的选择。”本课所依据的课程标准的相应部分还有“我与他人和集体”中的“交往与沟通” “在集体中成长”。具体对应的内容标准是: “知道礼貌是文明交往的前提,掌 握基本的交往礼仪与技能,理解文明交往的个人意义和社会价值。”“学会换位 思考,学会理解与宽容,尊重、帮助他人,与人为善。 ” “领会诚实是一种可贵 的品质,正确认识社会生活中诚实的复杂性, 知道诚实才能得到信任,努力做诚 实的人。”“知道每个人在人格和法律地位上都是平等的,做到平等待人,不凌 弱欺生, 不以家境、身体、智能、性别等方面的差异而自傲或自卑, 不歧视他人, 富有正义感。”
2. 内容内在逻辑本课由引言和三框内容组成。引言首先指出道德是社会关系的基石,是人际和谐的基础,说明本课与单元主题之间的关 联 。随后,点出本课的三个主题:尊重他人、以礼待人、诚实守信。第一框“尊重他人”,用学生常见的两个场景引导体验,导入新课 。学生在理解尊重含义的 同时,懂得尊重对个人和社会的价值和意义,懂得尊重的复杂性;进而引导学生学会如何在实 际生活做到尊重他人。第二框“以礼待人”,引导学生探讨文明有礼对个人和社会的意义,再扩展至“礼仪之邦”的 国家形象,懂得参加各种仪式体现了民族的尊严和国家的形象。第三框“诚实守信”,首先使学生明白诚信是一种道德规范,也是社会主义核心价值观在公 民个人层面的一个价值准则,在学生体会和认识到诚信对个人、社会等重要影响的基础上,引 导学生不断增强诚信意识,积极参加诚信建设。
材料一 近年,外形酷似汽车的代步车大量上路,他们无牌、无照,走机动车道、 闯红灯,逆行、随意抢道、并线,不仅给城市交通带来压力,也造成不少安全隐患。材料二 斑马线上礼让行人已成为常态,大部分行人在遇到车辆礼让时,都能自 觉快速通过,但仍有部分行人“ 目中无车”——边过马路边看手机,或以散步的速度 缓慢通行,还有一些人在等候的机动车间任意穿行。让行司机表示:很苦恼也很无奈。(1) 你如何看待闯红灯、逆行、随意抢道、并线等交通陋习?(2) 针对部分行人“ 目中无车”,你会如何劝说他们遵守交通规则?(3)请你为杜绝交通陋习提两条合理化建议。(可从国家及相关部门、社会、公 民等角度提建议)12.阅读材料,回答下列问题。邮轮旅游作为现在新兴旅行方式之一,很多国人还并不习惯,有的游客因为不懂 邮轮规则而“露怯”,有的游客因为不遵守规则而影响到他人。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。