若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
同学们:早上好当你每天背着书包上学时,看到过指示行人过马路的斑马线吗?当你走到路口,看到过为安全站岗的红绿灯吗?当你乘坐火车、汽车时,听到过“为了您的安全,请不要把头、手伸出窗外”的热情关照吗?在我们记事时,就常听爸爸妈妈说“干什么事,都要注意安全”;走进校门,老师也教我们要注意安全;识字以后,在工地、路口等危险的地方都看到过“请注意安全”、“安全第一”的牌子。安全是我们生活中永恒的主题!只有一生平安,才有美好未来。根据国家教育部规定,从1996年起,每年三月的最后一周的星期一为全国中小学生安全教育日, 今天是全国第十五个校园安全教育日。今年的教育主题是“加强疏散演练确保学生平安”。5月12日四川汶川大地震惊醒了世人,这场灾难夺去了整整几万人的生命。在这场灾难中多少家庭支离破碎,多少亲人生死离别。也许有些同学说地震毕竟发生的概率小,那么我就说说我们身边最近发生的一些事吧。
五、活动背景:健康的心灵是我们幸福的源泉,只有接纳自己、喜欢自己、充满自信才有健康的心灵。然而,随着社会的发展,中学生中存在着许多的心理健康问题。为更好地对中学生进行心理健康教育、更好地优化学生的心理素质,促进学生的心理健康成长。更好地引导同学们积极关注自我发展,自觉维护和提升心理健康水平,让同学们的心理朝着阳光健康的方向发展,我们特开展以“心灵护航,快乐成长”为主题的中学生心理健康教育主题班会
篇一尊敬老师,亲爱的同学们:大家好!中秋的脚步越来越近了,满月的光芒,在一个又一个的夜晚,悄悄临近。“不知天上宫阙,今夕是何年。”天上的日子似乎比人间要慢许多,但是,同学们,不要感叹时光的流逝,也不要将时光虚度。每一天本都它的有价值所在,将时光握紧,用分分秒秒来创造充实的时光。将目光着手书本,而不是漫画。因为我们已经长大。将身心专注学习,而不是玩耍。因为我们不再幼小。时光的虚度,只会使人感到老去得更快;充实的学习,则会让人领略到成功于欣喜,光阴也不禁放慢了脚步。多少轮中秋明月在夜里悄悄流逝,又有多少圆月,将在不久来临?我们步入初中,我们渐渐成熟,我们有了自己的理想,如明月般美好的。但是,我们可以尽情地梦想,又如何去打捞那轮美丽的明月。“人间悲欢离合,月有阴晴圆缺。”挫折在所难免,面对着失败,我们不可以被打败。
1.各科教师对实验教学必须制订总的和分学期的教学计划。并于上学期末或本学期初交教导处和实验室各一份。计划应分年级列出实验课题、实验类型、实验时间等。 2.实验室应根据实验各科教学大纲、教材和任课教师的实验教学计划,制订本学期实验室工作计划。计划应包括实验室使用安排,仪器和实验材料的购置及仪器的检查和维护等。 (二)实验教学的组织与实施 1.教师按照实验教学计划认真备课,写好教案,填写《实验通知单》,按规定的时间交实验室并检查所用仪器和器材的准备情况,试作实验,做到“心中有数”。 2.教师要指导学生做好课前预习,明确实验目的,掌握实验原理,并划分实验小组,强调实验纪律,重视安全操作教育。 3.实验室按照《实验通知单》积极准备实验,使需要的仪器处于完好状态,备足药品和材料,检查通风、电源、水源及其它设备。
二、为确保计算机的正常运转,防止病毒感染及造成计算机瘫痪,原则上不得将外来软盘、光盘、移动盘等在本单位计算机上使用(若工作需要使用,必须先经过杀毒处理),不得在计算机中任意安装与工作无关程序或删除重要文件。 三、不在计算机上做与工作无关的事。工作时间严禁在计算机上进行炒股和聊天、游戏等娱乐活动;不进入商业性网站进行猜奖、传销之类活动;遵守道德准则,严禁进入不健康网站;遵守网络规范,不传播有害信息。 四、爱护一切计算机设备,不得擅自更改设备配置,严禁将计算机设备移作它用,并做好防雷、防火、防盗、防潮工作,以保障计算机设备处于良好状态。确实需要,须经管理人员许可。
活动准备:小朋友表情照片若干小火车 活动过程第一环节:情景导入,激发幼儿兴趣。以边念儿歌边开火车的形式,激发幼儿活动的兴趣。 1、边念儿歌边开火车入场,引发幼儿的兴趣。 2、认识心情火车。 3、让幼儿数数有几节车厢。 第二环节:师生互动说说表情。感知开心、生气、伤心的心情。第一次让幼儿找自己的照片。第二次找好朋友的照片。体现了层次的递进性。 1、坐上心情火车,请幼儿找自己的照片,说说自己的照片。 2、第一次交流,说说自己的表情,并说出原因。
第一环节:回顾引入活动内容:①什么叫做定义?举例说明.②什么叫命题?举例说明. 活动目的:回顾上节知识,为本节课的展开打好基础.教学效果:学生举手发言,提问个别学生.第二环节:探索命题的结构活动内容:① 探讨命题的结构特征观察下列命题,发现它们的结构有什么共同特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.(3)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.(4)如果一个四边的对角线相等,那么这个四边形是矩形.(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形.② 总结命题的结构特征(1)上述命题都是“如果……,那么……”的形式.(2)“如果……”是已知的事项,“那么……”是由已知事项推断出的结论.
本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
作为一个中国人,一个炎黄子孙,我们应该热爱自己的祖国.而国旗和国歌是国家的象征.所以我在升旗仪式时,能做到不讲话,在唱国歌时,我会做到高唱国歌.作为一个合格的中国人同样还应该知道祖国的历史,文化,传统.所以我会积极查阅中国的古典名著,了解祖国各地的风土民情. 个人永远不能独立存在,终将会成为集体中的一员.现在的我们就是班级这个大集体中的一份子.我认为在班级中并不一定要担任某些重要的责任才可以,只须做好自己的本职工作,为别人增添不必要的麻烦就行了.我身为班级的电教员在每节课上课前,都会询问下节课的任课老师是否需要使用投影仪.当老师需要使用时,我会将投影仪打开,调试好,然后等待老师前来上课.
[活动目标]1、鼓励幼儿在生活中做一个善于观察的有心人。2、进一步培养幼儿的语言表达能力、观察能力、思维想象力和分析能力。3、帮助幼儿认识生活中的一些常见标志,懂得基本的安全知识,提高自我保护能力。[活动准备]1、请家长协助带孩子在生活中观察常见的安全标志。2、各种标志、图片若干。3、布置好的“安全标志图片展览”4、音乐磁带。[活动过程] 一、教师组织幼儿在音乐声中进入活动室,并参观布置好的“安全标志图片展览”幼儿边看边说说自己认识哪些标志,它们有什么意义。(评析:幼儿在音乐声中进入活动,会有一个轻松愉快的开始,为活动打好铺垫。参观图片展,能给幼儿一个整体的印象,他们在看看说说的过程中,会互相学习,这也体现了纲要中提到的“注重幼儿间的相互作用”)
活动准备:各种交通标志、画有标志或无标志的拼板若干、立体骰子若干、带有交通标志的礼物若干、磁带、录音机、有交通标志的牌子 活动过程: 一、 随音乐跳兔子舞进入活动场地。二、 你说我翻 “小朋友,你们知道哪些交通标志啊?你们所说的可能会在后面的黑板上哦!”
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。