同时春节是我们中国的传统的节日,孩子们都喜欢过年那种欢快、祥和的热闹气氛,他们盼望着过年,期待着早日拿到压岁钱,可以尽情的放鞭炮。尽情的玩了,这时的情感体验尤为明显,我们在临近春节前后,可以开展主题活动“中国娃”主题活动,这一活动的开展除了让幼儿感受节日的氛围,还可以通过活动让幼儿了解中国传统的风俗习惯,培养幼儿热爱自己的祖国,感受节日的氛围,体验成长的快乐。在这一主题活动中我们根据班级幼儿的实际情况(班中一些幼儿对于在电视里看到、听到的歌曲较喜欢模仿,并且很容易记忆)所以选择了这首《欢乐中国年》为活动内容,并不是让幼儿来学唱歌曲,而是通过这种欢乐鼓舞的音乐让幼儿感受过年的气氛。大班幼儿他们在能力、情感上都呈现了个性化,较为喜欢用身体动作来表现自己现有的情绪情感,在日常活动中往往一放音乐他们就自发的在那里扭扭腰、跳跳舞,很喜欢听着音乐表达自己的情感。这也是我要选择这个活动的理由。1、体验过年的欢乐、喜庆之情,在轻松愉快的气氛中学习舞蹈。2、学习舞彩带和灯笼的一些基本动作。3、初步练习创编不同方位,不同幅度的舞彩带和灯笼动作。
一、考核时间:以每个教学月为单位,一月一考核,一月一计奖。二、计分方法:月满分为200分,本规定以扣分为主,扣后的剩余分数之和加奖分等于本月总积分。三、记奖方法:各年级组同类班级取第一名为文明班级。如若特长班第二名与第一名月积分小于或等于10分,可享受二等奖,若特长班第三名与第一名月积分小于或等于20分,可享受三等奖,大于20分无奖;如若平行班第二名与第一名月积分小于或等于20分,可享受二等奖,如若平行班第三名与第一名月积分小于或等于30分,可享受三等奖,大于30分无奖;一班的评奖方法是:与一班、一(5)班减去寝室的月积分相比,若高于或等于第一名的月积分,可享受一等奖,如此例推;二(4)班的评奖方法是:减去5个流失生的分数,与二(1)班、二(2)班、二(3)班的最后一个获得奖项的班级相比,如若月积分小于或等于20分,可享受一等奖,若月积分小于或等于30分,可享受二等奖,如若月积分小于或等于40分,可享受三等奖,大于40分无奖,若在同级同类班级中月积分小于3分,每班可同时享受一等奖、二等奖、三等奖(平行班月扣分达80分以上取消评奖资格,特长班月扣分达50分以上取消评奖资格)。四、奖金分配:初一、初二住读班、特长班、初三走读班按班数每班每月拿出0.5个岗位值来作为总奖金,初一、初二走读班按班数每班每月拿出0.4个岗位值来作为总奖金,初三特长班、住读班按班数每班每月拿出0.6个岗位值来作为总奖金,一次扣3分。财产:每月至少查一次,损坏公物要照价赔偿,且予以扣分,玻璃一块扣1分,桌椅损坏一张扣2分,门破窗垮一次扣5分。大型集会:如升旗、运动会、课间操……等班主任必须到操场组织学生站队,确保队伍质量,真正做到快齐静,班主任一次未到扣1分。班级被领导点名批评一次扣1分。班级无故缺会一次扣10分。宣传:黑板报每月办一期,以学校安排为主,未安排时各班自行主办,否则未办一次扣5分,在学校大型宣传活动中,不投稿、不配合1次扣5分,其它酌情扣分。
如:旋转的理发店标志灯、变幻莫测的霓虹灯,吸引了一双双惊奇的眼睛,难道灯也在长个子、霓虹灯也会跑步、做游戏吗?《新纲要》指出:引导幼儿对身边常见的事物和现象的特点、变化规律产生兴趣和探究的欲望,要尽量创造条件让幼儿实际参加探究活动,使他们感受科学探究的过程和方法,体验发现的乐趣。为满足孩子的好奇心和探索欲望,我设计了中班的科学活动《眼睛变魔术》,本活动是根据北京教材中心“爱护我自己”之活动一“保护小眼睛”所设计的延伸活动,通过活动,使幼儿进一步了解、体会眼睛看到的错觉现象。活动目标:1、体会眼睛看到的错觉现象,体验发现的乐趣。2、初步培养幼儿对错觉游戏活动的兴趣,激发幼儿的探索欲望。活动重难点: 体会眼睛看到的错觉,并能说出自己观察到的现象。二、说教法 本次活动教师将以关怀、尊重的态度与幼儿交往,把握时机,积极引导,关注幼儿在活动中的表现和反应及时以适当的方式应答,形成合作探究式的师生互动,并运用游戏、演示、提问、操作等方法,努力使每个幼儿在活动中都能有新奇的发现,获得情感和探究的满足,体验成功的喜悦。
二、说活动目标 活动目标是教学活动的起点和归宿,对活动起着引导性的作用。根据《新纲要》在科学领域中提出:在幼儿生活经验的基础上,帮助幼儿了解自然、环境与人类生活的关系。从身边的小事入手,培养初步的环保意识和行为。根据这一目标和要求,结合中班幼儿年龄特点制定了认知、技能、情感三方面的教学目标。1、目标一:欣赏图片阅读教材,理解图片内容知道花草树木对人类的作用。2、目标二:欣赏图片并根据生活经验,说出几种花草树木的名称和作用及其保护方法。3、目标三:了解花草树木与人类的依存关系,萌发幼儿保护花草树木及环境的意识,产生爱树爱花的情感。 (目标定位:通过欣赏图片阅读教材来了解花草树木对人类的作用,了解花草树木是怎样为人类服务的,萌发幼儿爱护花草树木的情感)三、说教法与学法 《新纲要》中强调幼儿是中心,教育活动应该以幼儿的需要,兴趣,尤其是幼儿的经验来进行,学决定教。在活动中我和幼儿的角色都是教学活动的主人翁,主要是以幼儿为主。让幼儿在教学活动中享受探究问题及解决问题的快乐。所以在教学活动中我采用了“图片观察法”运用直观、形象的图片进行欣赏,引导幼儿理解图片内容及其意思。“游戏法”通过游戏让幼儿亲身体验怎样爱护花草树木让幼儿更深一层的了解爱护花草树木需要做的事情,在游戏中让幼儿学会爱护花草树木的深刻内涵。四、说活动准备 活动中准备:挂图四幅、幼儿用书第37-38页、五幅环保画(例如:树木被破坏、花朵被摘……)、制作花朵大树头饰幼儿人数各一半
尊敬的老师、亲爱的同学们:大家好!战鼓擂响,旌旗飞扬,高考的战火已经熄灭;六月流火,放手一搏,中考的眉眼也在我们夜以继日的发奋中一天天清楚。在本周即将到来的中考眼前,同学们,我们应该时刻记住,只有拼出来的美丽,没有等出来的辉煌。没有焚膏继晷,就没有苦尽甘来;没有挑灯苦读,就没有明日的欣慰;没有“不怕远征难”的坚韧,梅州户外饮水尚需知其源,回看这一千多个日昼夜夜,师长的鼓励与呵责永远如同漫漫永夜中的灯火,如同遍天阴霾中的阳光,让我们在前进的路上看见希看,看见前方晴朗的天。
第一个板块:观看视频,导入主题首先播放“我的梦中国梦”公益节目视频,让学生通过观看视频认识梦想,感受到梦想的重要性。然后在歌曲《梦想》的旋律中引出课题。这种以视频创设情境的导课方式,可以抓住学生的注意力,激发学生的好奇心,启发学生的想象力,使学生产生浓厚的兴趣。第二个板块:识“梦”1、畅谈”我的梦”在这一环节我设计了这样的问题:你的梦想是什么?学生畅所欲言。谈论自己的梦想是学生们所喜欢的,这样可以激起学生的学习兴趣,调动他们参与交流的积极性,从而让他们在交流中思考,明确自己的梦想。2、感受“学校梦"首先请学生代表介绍学校举办黄海潮的盛况、校足球运动的开展情况以及校足球队取得的佳绩,通过-个个亲身经历的学校故事,让学生产生情感共鸣,从而感受到:我们的学校也在追梦,在所有老师和学生的艰辛努力下,取得了很多耀眼的成绩。
树立班主任学生观:其一班主任应该感谢问题学生,是因为学生成长中的种种问题表现,才给了班主任实践成长的机会;其二班主任必须善待问题学生,初中学生本来就是正在逐渐成熟过程中的没有懂事的小孩,换言之,小孩总是在不断试误过程中,得到教训,接受道理,消除童蒙,逐步养正的。因此班主任必须有足够的宽容、耐心、爱心,用心呵护真情浇灌,迟开的花朵更美丽。三、锻炼了班主任的工作技能班主任工作是个性化工作,班主任工作很繁琐,特别是年轻班主任,一方面要从事繁重的教学工作,另一方面又要承担繁琐的班级管理工作,千头万绪,不知从何下手,为了使年轻班主任尽快掌握班集体形成规律,有效的开展班集体建设,我们制定了20条班主任工作规范,让年轻班主任更快的适应班级管理工作。工作规范具有很强的指向性、指导性和可操作性,班主任可以少走弯路,切实提高班集体建设的实效性,加快年轻班主任的成长历程。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。