一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
知识与技能To teach the words in the house : sofa table chair box cupboard shelf . Pron. on in under near
同学们:老师!(小鸿拿起书包就要跑,卫生委员过来揪住他)卫生委员:小鸿你又想逃了!站住!做好值日再走。小鸿:我今天有事,要先走,小华,你帮我把值日做好!我先走啦!(说着就往外逃)小华(很生气,在扫地):每次和他值日都说有事,太过分啦!我要告诉老师!小品演完,全体演员出来谢幕。女:小品已经表演完了,让我们再次以热烈的掌声感谢这么多位“演员”的表演,谢谢!男:非常感谢这些同学为我们表演了一个那么精彩的小品。下面请大家以四人为一小组进行讨论,评评小品中的小鸿哪些是不良的行为?分组讨论(全体同学以四人为一小组展开激烈讨论。后自由发言,谈各自看法)女:同学们刚才的发言都很热烈,现在请几位同学作为代表来说说小品中的小鸿哪些是不良行为?
活动要求:1、 各班级务必要邀请一位老师(辅导员或导师),若导生在校,则可邀请导生到场观看。2、 各班级要根据自身情况,由班长、学委负责组织,深入把握该次主题活动精神所在,拟定好方案。并且务必在举行主题班会前提前知会秘书处和学习部的系负责人,及时通知他们主题班会开展的时间地点。3、 各班级的班干部要积极参与主题班会的各项组织工作,做好考勤、场地、议程安排和讨论记录等工作。4、 活动过程注意时间,纪律等方面的控制。推荐活动时间为60分钟。5活动2天内,请各位班长将此计划书与总结书以电子版形式发到秘书处系负责人处.逾期不候.总结书的要求(400字以上):总结内容包括:总结本次主题班会的优缺点、以及工作建议等等。总结是主题班会的成果体现,请班级给予充分重视。班长签名:班会结束后2天内,请各位班长将此计划书与总结书以电子版形式发到秘书处系负责人处.逾期不候.
一、活动目标 :1、知识与能力目标:让学生了解祖国的灿烂文化,提高学生的审美能力。2、过程与方法目标:在活动中相互分工,相互合作,培养学生的合作能力。 通过展示有关传统文化资料,旨在引起学习传统文化的浓烈兴趣,领略传统文化的无穷魅力。3、情感态度与价值观目标:增强学生的爱国情感和保护祖国传统文化的意识,从而激发对伟大祖国的挚爱之情。二、活动准备 :1、了解有关民族传统文化,了解传统文化中丰富的内容。2、图片,实物(中国结等),文字资料。3、黑板中间写“弘扬民族传统文化”的标题。三、活动人员:XX班全体师生。四、活动过程:(一)活动的步骤:1 让学生了解中华民族传统文化丰富。2 展示中华传统文化多彩的内容。3 培养爱国情感。(二) 活动的具体过程1、宣布主题:老师:“弘扬民族传统文化”主题班会现在开始!。2、活动开始今天,老师给大家带了一件礼物,你知道这是什么吗?(出示中国结)全班答:中国结。那你能说说你所了解的关于中国结的资料吗?
二、主题网络 丰富词汇 增长知识与才智 言简意赅 动物类谈话绘画制作表演 作 用 数字类 我喜欢的成语 成 语 种 类 同字类 表征活动 寓意相同类 我制作的成语邮票 凿壁借光 囊莹映雪 悬梁刺股 向他们学习三、关键经验1、知道汉语成语是中华民族瑰宝,能关注生活中使用的成语,激发喜爱成语的积极情感。2、了解汉语成语的种类、作用,体验其精炼明快、言简意赅的特点。3、愿意运用多种方式(讲、画、制作、表演)创造性地表现喜欢的成语。4、能运用调查、查阅、交流等方法进行探索学习。
我们一起收集和模仿了许多有趣的表情,孩子们最喜欢和擅长模仿的就是哭脸和笑脸。从孩子们的模仿中我萌发了设计这个活动的想法;另外现在的孩子都是独生子女,由于家长的溺爱使他们"以自我为中心"的性格明显展露,因此,在幼儿园经常会看到小朋友之间为了一把小椅子互相争抢,自己占有玩具,不和其他小伙伴一起分享等不愉快、不友好的现象。抓住这个锲机开展本次活动,萌发幼儿关心他人,愿为朋友带来快乐的情感,增强与人友好交往的意识。本次活动的重难点是让小朋友们体会高兴与伤心的不同心情,懂得要关心他人,与朋友一起分享美好的事物。让孩子通过表现不同表情娃娃所带来的不同感受,解决实际生活中遇到的小朋友之间发生的不友好现象来进行突破。 中班综合活动:快乐心情 活动目标: 1、通过说说、演演、画画等形式表达自己的情绪。 2、尝试想办法保持好心情,做一个高兴的娃娃。 3、 萌发幼儿关心他人,愿为好朋友带来快乐的情感。 前期准备:1、心情火车六列,
3、认识感觉器官的重要性,学习运用听、看、摸、嗅等感觉途径探索事物。教育活动:1、健康活动:身体触觉 爱护眼睛2、语言活动:故事《颜色真奇妙》 小线索大侦探3、社会活动:神秘箱 假如我看不见4、科学活动:嗅觉瓶 眼睛变魔术 复习8以内数的形成5、艺术活动:歌曲《猫戴帽》 制作香香袋环境创设:师生共同布置活动区角,各种五官表情卡片、娃娃脸谱(无五官)、彩色透明卡、眼镜架。家长工作:1、和幼儿一起搜集日常生活中颜色鲜明、气味较强、触感较明显的物品,供幼儿运用不同的感官去感知探索。2、外出时注意引导孩子运用不同的感官了解周围环境。活动设计1集体活动(一)活动内容:社会《神秘箱》活动目标:1、激发幼儿探索的兴趣2、发展幼儿触觉、嗅觉、视觉的发展。3、运用感官知觉做游戏,了解各种感觉器官的功能。活动准备:教师自制神秘箱,并将常见物品,放在箱子中。活动过程:(一)、导入 游戏“指指点点”,激发幼儿兴趣。
主题目标:1、了解的身体主要部分的外部特征,体验它们的作用。2、运用策略及比较的方法,体验自己在长大,并为自己长大而高兴。优秀教案:活动名称:我想长大活动目标:1、观察、比较小老鼠、青蛙身高、体重的变化,了解饮食、运动与身体长大的关系。 2、引导幼儿大胆地想象让自己长大的方法。活动准备:PPT《我想长大》、幼儿对测量身高体重有一定的经验。活动过程:一、看看说说,比较小老鼠、青蛙身高体重的变化看PPT《我想长大》1、你们觉得它们长大了吗?从哪里看出来它们长大了?2、小老鼠小青蛙原来多高?原来多重?现在多高?现在多重?观察:身高树2-3 天平秤苹果2只—3只小结:师生共同小结(小老鼠长高了吗?原来是2现在是3,原来两只苹果现在三只苹果。)
活动准备:十二生肖的图片一、你知道十二生肖吗1、教师出示“兔子”图,——介绍:每个人都有自己的属相,你属什么?你的爸爸妈妈是属什么的?2、你知道人的属相一共有几种动物?有哪些动物?3、出示众多图,请幼儿找找哪些是十二生肖的动物?——揭示正确答案小结:十二生肖的说法是我们中国人很早就有的,每年就以一种动物做标志,一共有十二个动物,十二生肖。几年后又是这个小动物的生肖?(十二年)4、今年、去年、后年分别是什么年?
一、活动目的:1、让幼儿认识掌握生活中常见的符号,并说说符号的作用,掌握一定的规律。2、知道公共场所中符号标志的重要性,养成自觉按符号标志行事的好习惯。二、活动准备: 1、禁止驶入、禁止行人通过、火警电话、灭火器、人行横道标志、禁止燃放烟火等各种常见的信号标志;录音机、磁带、挂图及场景布置。2、事先带领幼儿认识几种常见的符号标志。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。