(4)Finally, I will ask the SS what this sentence mean:It is always calm before a storm.Purpose: attract the SS attention and bring them into discussionStep 2: Pre-reading 读前Here, I will do the second question in pre-reading first. I will use the method of brainstorming to ask the SS what will happen before an earthquake; and list the phenomenon on the table. 2. Then I will show the SS the picture of abnormal phenomenon, at the same time, encourage the SS to describe.3、finally, I will summarize these phenomenon4、Do the first question in the pre-reading , Imaging your home begins to shake and you must leave it right away. You have time to take only one thing. What will you take? Why?Purpose: help the SS to get further understanding of the topic and stimulate their interests.Step3: While-reading 阅读(1). Skimming Read the text quickly and catch the meaning of the first and second sentence of each paragraph. Predict the meaning of new words(2).scanning(找读)A. Read the text again. Do the following question.1. When and where were the strange things happening?2. What are they?3. Why did the text say the world seemed to be at an end?4. How was the city destroyed after the quake?5. When did the second quake hit the city? What was the result of that?6. Who came to help Tangshan first? And how?B. Work in pairs to discuss the question.
为减少发文数量,提高办文速度和发文质量,充分发挥文件在各项工作中的指导作用,特制订本制度。一、文件管理内容主要包括:本公司上报下发的各种文件、资料、单据。按照分工的原则,全公司各类文件由办公室归口管理。三、公文的签收1.凡来公司公启文件(除公司领导订启的外)均由办公室登记签收2.对上级机要部门发来的文件,要进行信封、文件、文号、机要编号的“四对口”核定,如果其中一项不对口,应立即报告上级机要部门,并登记差错文件的文号。3.公文的编号保管(1)、办公室秘书对上级来文拆封后应及时附上“文件处理传阅单”,并分类登记编号、保管。须由公司承办或归档的公司领导亲启文件,公司领导启封后,也应交办公室办理正常手续。(2)、本公司外出人员开会带回的文件及资料应及时分别送交办公室秘书进行登记编号保管,不得个人保存。4.公文的阅批与分转(1)、凡正式文件均需分别由办公室主任(或副主任)根据文件内容和性质阅签后,由办公室秘书分送承办部门阅办,重要文件应呈送公司领导(或分管领导)亲自阅批后分送承办部门阅办。为避免文件积压误事,一般应在当天阅签完,紧急文件要立即办。(2)、一般函、电、单据等,分别由办公室秘书直接分转处理。如涉及几个单位会办的文件,应同主办单位联系后再分转处理。(3)、为加速文件运转,办公室秘书应在当天或第二天将文件送到公司领导和承办部门,如关系到两个以上业务部门,应按批示次序依次传阅,最迟不得超过2天(特殊情况例外)。5.文件的传阅与催办(1)、传阅文件应严格遵守传阅范围规定,不得将有密级的文件带回家、宿舍或公共场所,也不得将文件转借其他人阅看。对尚未传达的文件不得向外泄露内容。(2)、阅读文件应抓紧时间,当天阅完后应在下班前将文件办公室,阅批文件一般不得超过2天,阅后应签名以示负责。如有领导“批示”、“拟办意见”,办公室应责成有关部门和人员按文件所提要求和领导批示办理有关事宜。(3)、文件阅完后,应送交办公室秘书,切忌横传。(4)、办公室秘书对文件负有催办检查督促的责任,承办部门接到文件、函电应立即指定专人办理。不得将文件压放分散,如需备查,应按照公司有关规定,并征得办公室同意后,予以复印或摘抄,原件应及时归档周转。
甲 方: 地 址: 电话: 法定代表人:________________ 职务:____________ 国籍:____________乙 方: 地 址: 电话: 法定代表人:________________ 职务:____________ 国籍:____________兹经双方同意,甲方委托乙方在________________加工________________________________ ,其条款如下:1.来料加工和来件装配的商品和数量:(1)商品名称;(2)数量………共计 台。2.一切所需用的零件和原料由甲方提供,或由乙方在 或 购买,清单附于本合同内。3.每种型号的加工费如下(1) (大写: 美元);(2) (大写: 美元);(3) (大写: 美元)。4.加工所需的主要零件、消耗品及原料由甲方运至____________,若有(某地)
(a)(1)“业主”指 (名称)及其法定继承人,不包括其任何受让人(除承包人同意外)。业主可在本合同项下指定一家采购全权代理机构,如果已经指定,则在投标须知前附表第23栏中指明采购代理机构的名称、采购、监督和支付的范围,以及在招标期间及随后的授标等问题上的责任。(2)“承包人”指其投标书被业主接受的当事人,或其法定继承人,不包括其任何受让人(除业主同意外)。(3)分包人指在合同中提及的承担部分工程施工的当事人或经监理工程师、同意已分包了部分工程的任何当事人,及取得该当事人资格的法定继承人,但不包括其任何受让人。(4)“监理工程师”指由业主指定的为执行合同规定的任务的监理工程师、即 (监理工程师单位名称)或由业主任命并书面通知承包人代行监理工程师职权的当事人。(5)“监理工程师代表”指根据22款规定随时由监理工程师任命的个人。(6)“承包人授权代表”是指由承包人任命由业主批准,在本合同项下代行承包人全权的个人。(7)“熟练工人”指的是熟悉放样、对复杂工程能进行监督的工人,包括设备操作人员。(8)“非熟练工人”指的是持普通手工工具,包括小型动力工具进行施工作业的人员。(b)(l)“合同”指合同条件、规范、图纸、工程量清单、投标书、中标
附件A 监理服务的形式、范围与内容一、监理服务的形式1服务要求例:对监理单位的资质、监理服务的主要方式及监理工作的隶属关系等方面的要求。2组织机构认对监理服务机构的设置、工作计划的安排、主要人员的资质等方面的要求。二、监理服务的范围1服务范围例:监理服务所包括的工程范围和工作范围。2服务目标例:监理服务的性质、目的及主要工作目标。三、监理服务的内容例:本条所列的监理服务各阶段内的具体监理工作,应主要参照《公路工程施工监理规范》(JTJ 077-95)的内容予以归纳,并根据本工程的具体情况予以补充。1编制监理规划或计划;2熟悉合同文件,了解施工现场;3参与支柱和设计交底工作,审查承包人提交的复测成果和施工图设计;4督促和检查承包人建立质量保证体系;5主持召开第一次工地会议和常规工地会议;6已发布开(复)工今批准单项工程开工报告;7审核承包人授权的常驻现场代表的资质,以及其它派驻到现场的主要技术、管理人员的资质;
l.正常服务的费用例:监理单位正常服务费用的计算方法、费率和价格或双方约定的其它方法。监理单位正常服务费用一般应包括如下内容:(1)派驻监理人员费用1.基本工资2.加班费(法定节、假日的加班和法定工作时间以外的延时工作,按《劳动法》的规定办理)3.各种补助4.各种津帖5.个人所得税6.其它(2)现场费用1.辅助、服务、勤杂等人员的聘用费2.办公用品费3.文具纸张费4.资料费5.劳动保护费6.防暑降温费或冬季取暖费7.伙食费8.差旅费9.煤、气、水、电费10.交通、通讯资11.其它(3)不可预见费建议比例1.0.%-1.5.%(4)公司取费1.法定提留基金(工会、教育、职工福利、住房、养老等)2.上级管理费3.法定利润4.法定税收(营业税、所得税等)5.其它2.附加服务的费用例:监理附加服务费用的基本测算方法,由双方协商确定,一般可采用如下办法:(1)附加工程工作量x基本费率;(2)附加服务工作日数X监理服务日平均费用;(3)附加服务工作比例X监理服务费用总额。
一、订立合同双方(全称):甲方:镇平县十方物流有限公司乙方:二、合同期限:车型 共计 辆,载客 人或载重 吨,牌照号码 。自 年 月 日起至 年 月 日。三、约定与要求:1、乙方的权利和义务(1)乙方车辆驾驶员须具备符合规定的驾驶证,无重大交通事故和严重交通违章记录,并向甲方提供驾驶人身份证、驾驶证、从业资格证复印件各一份。(2)乙方车辆必须是当年度检审验合格,车辆各种证件及牌照齐全有效。车辆必须购买“第三者责任强制保险和商业险种”;车辆安全附件完整、技术状况良好,转向、传动、制动系统可靠有效,外观牢固并整洁。(3)乙方车辆驾驶员应认真遵守《道路运输交通安全法》及有关安全行车规定,自觉接受甲方对其车辆进行的一切安全技术检查,对检查中发现的安全隐患,要立即进行整改和修理。服从调动指挥,保质保量的完成运输任务。凡不服从管理,甲方有权将其辞退。(4)乙方应对甲方和自身车辆的安全负责,不得违章驾驶和运输,因违章驾驶和违章运输时所造成的后果(财产损失、人员伤亡等)或交通事故,应自觉接受相关部门或公安机关的处理,并负责赔偿甲方的一切经济损失。
1.来料加工和来件装配的商品和数量:(1)商品名称;(2)数量………共计 台。2.一切所需用的零件和原料由甲方提供,或由乙方在 或 购买,清单附于本合同内。3.每种型号的加工费如下(1) (大写: 美元);(2) (大写: 美元);(3) (大写: 美元)。4.加工所需的主要零件、消耗品及原料由甲方运至____________,若有(某地)短少或破损,甲方应负责补充供应。5.甲方应于成品交运前1个月,开立信用证(或电汇全部加工费)用于由乙方在____________或____________购买零配件、消耗品及原料费用。6.乙方应在双方同意的时间内完成____________型标准____________的加工和交运,不得延迟,凡发生无法控制的和不可预见的情况例外。7.零件及原料的损耗率:加工时零件及原料损耗率为______%,其损耗部分由甲方免费供应,如损耗率超过_____%,应由乙方补充加工所需之零件和原料。8.若甲方误运原料及零件,或错将原料及零件超运,乙方应将超运部份退回,其费用由甲方承担,若遇有短缺,应由甲方补充。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。