提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

秋季开学讲话稿小学5篇

  • 抛物线及其标准方程教学设计人教A版高中数学选择性必修第一册

    抛物线及其标准方程教学设计人教A版高中数学选择性必修第一册

    本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 双曲线及其标准方程教学设计人教A版高中数学选择性必修第一册

    双曲线及其标准方程教学设计人教A版高中数学选择性必修第一册

    ∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

  • 人教版高中数学选修3分类加法计数原理与分步乘法计数原理(1)教学设计

    人教版高中数学选修3分类加法计数原理与分步乘法计数原理(1)教学设计

    问题1. 用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?因为英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出26+10=36种不同的号码.问题2.你能说说这个问题的特征吗?上述计数过程的基本环节是:(1)确定分类标准,根据问题条件分为字母号码和数字号码两类;(2)分别计算各类号码的个数;(3)各类号码的个数相加,得出所有号码的个数.你能举出一些生活中类似的例子吗?一般地,有如下分类加法计数原理:完成一件事,有两类办法. 在第1类办法中有m种不同的方法,在第2类方法中有n种不同的方法,则完成这件事共有:N= m+n种不同的方法.二、典例解析例1.在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,如表,

  • 人教版高中数学选修3分类加法计数原理与分步乘法计数原理(2)教学设计

    人教版高中数学选修3分类加法计数原理与分步乘法计数原理(2)教学设计

    当A,C颜色相同时,先染P有4种方法,再染A,C有3种方法,然后染B有2种方法,最后染D也有2种方法.根据分步乘法计数原理知,共有4×3×2×2=48(种)方法;当A,C颜色不相同时,先染P有4种方法,再染A有3种方法,然后染C有2种方法,最后染B,D都有1种方法.根据分步乘法计数原理知,共有4×3×2×1×1=24(种)方法.综上,共有48+24=72(种)方法.故选B.答案:B5.某艺术小组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?解:由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人记为甲),只会钢琴的有6人,只会小号的有2人.把从中选出会钢琴与会小号各1人的方法分为两类.第1类,甲入选,另1人只需从其他8人中任选1人,故这类选法共8种;第2类,甲不入选,则会钢琴的只能从6个只会钢琴的人中选出,有6种不同的选法,会小号的也只能从只会小号的2人中选出,有2种不同的选法,所以这类选法共有6×2=12(种).因此共有8+12=20(种)不同的选法.

  • 巡河调研报告2篇

    巡河调研报告2篇

    一要加大宣传力度,提升村民环保意识。督促村三委班子、驻村工作队、护边员等要加大宣传教育力度,积极引导广大边民群众主动参与到“河长制”工作中。特别加强对饮用水水源地周边群众的宣传,增强广大群众保护饮用水水源的意识,引导公众自觉参与到饮用水水源保护工作中来。二要加大保护力度,改善水生态环境。成立河道清理小组,加大巡查力度,对河面及岸边进行及时清理。研究制定有效措施,加强对生活污水的处理。

  • 登高教案 3篇

    登高教案 3篇

    一、激趣导入  多媒体显示写杜甫的对联:  诗史数千言,秋天一鹄先生骨;草堂三五里,春水群殴野老心。  1、提问:同学们知道这幅对联是写谁的吗?请大家回忆一下我们学过他的那些作品?能背诵一首我们共同欣赏吗?(学生背诵)今天我们来学习他的另一首诗歌《登高》(板书)

  • 过秦论教案 3篇

    过秦论教案 3篇

    1.通过预习指导,使学生借助课文的注释、工具书和参考资料了解时代背景、作者简况及各段大意,疏通文句。  2.讲授课文,指出作者政治主张的历史局限时,不必在什么是秦二世而亡的真正原因上旁征博引,同时对文中涉及的历史人物及史实,也不要过多介绍。可在课外指导学生读点通史或历史故事(如《东周列国志》,虽是小说,但基本事件多见诸其书)。

  • 圆的周长教案 3篇

    圆的周长教案 3篇

    一、讨论探索活动导入  1、展示实物篮球、瓶盖、硬币  揭示主题:圆的周长  2、提问:正方形、长方形的边长是4条边相加就是周长,那圆的周长也和它们一样吗?  3、引导学生利用身边的工具测量出篮球的周长(分小组讨论探索)  4、提问:圆是没有边长的,它只是一条曲线,你们能利用手中的工具将圆的周长测量出来吗?你们能想几种方法出来?

  • 《小鸟 小鸟》教案

    《小鸟 小鸟》教案

    一、师生问好二、呼吸练习深呼吸,均匀吐气。三、视唱《小鸟小鸟》1、识谱练习,学生自己试着唱歌曲的旋律。2、学生跟琴试着唱歌谱。3、分组进行练习,发挥组长的作用,提高学生视唱的能力。4、学生加歌词,用正确的发生方法进行演唱。5、老师用优美的琴声带领学生唱歌。四、二声部学习,歌曲处理1、全班唱歌曲主旋律,用正确的发声方法,口腔自然打开。2、第一声部的同学复习旋律,要求口腔要圆润,并用上自然的声音。3、第二声部的同学跟老师的琴声哼唱旋律。老师弹唱二声部旋律,学生听与第一声部的区别。老师可以反复两次,请学生比较二声部的音比第一声部高还是低,教师做适当的引导。

  • 《小鸟 小鸟》教案

    《小鸟 小鸟》教案

    一、生态环保导入 设问:(1)哪些小动物是人类的好朋友?我们要加以保护吗? (2)你能说出描绘春天的成语吗?(春光明媚,鸟语花香,春暖花开,莺歌燕舞……)二、聆听范唱《小鸟 小鸟》 设问:(1)歌曲是几拍子?说出该拍号的含义?(复习6/8拍号) (2)歌曲表达了怎样的情绪,描绘了怎样的情景?三、学唱曲调1、教师范唱曲调。 设问:曲调每一乐句有什么规律?每起句的第一拍有什么规律?(弱拍起唱——第六拍起唱)2、先学第一部分(第一乐段)。 A、教师范唱。设问:听辨并找出相同与相似的地方?

  • 《小鸟 小鸟》教案

    《小鸟 小鸟》教案

    学唱歌曲《小鸟 小鸟》的活动可采用谈话的方式导入,让学生描绘身边的春色,说一说赞美春天的诗句以及对新的一年寄予新的希望等等,应让学生畅所欲言。教师则抓住本课的主题进行总结:春天带来了新的希望。不仅人类对春天充满渴望,而且自然界的一切生灵,也都诉说着对春天的渴望。 初听歌曲时,教师引导学生模仿小鸟飞翔的动作,随着音乐动一动,体会圆舞曲的节拍感。学唱歌曲时,可以根据情景先学习合唱部分。  歌曲艺术处理的重点是抓声情的处理。也可以将艺术处理交给学生,让他们分组讨论,发表自己的观点,并分组展示,共同归纳总结,这样更能激发学生的兴趣。

  • 《小鸟 小鸟》教案

    《小鸟 小鸟》教案

    一、情境导入 出示几幅风景画,展示春天的景色,感受春天的美景。老师说:“小鸟非常的可爱,给我们的生活带来了无穷的乐趣,下面我们就来听一首歌曲《小鸟 小鸟》,听后请你们说说自己的感受。”二、寓教于乐 学生初听歌曲,感受歌曲情绪。学生表达自己的感受:欢跃、亲切地、活泼地…… 教师:这样一首欢快的歌曲你们想不想知道它唱得是什么内容呀?(学生回答)下面就请大家认真听一听歌曲中都唱了什么?学生听歌曲内容,听后复述:春天里有阳光,树林里有花香,小鸟在自由地飞翔,在田野,在草地,在湖边,在山岗,小鸟迎着春天歌唱…… 学生再次聆听歌曲,熟悉歌曲内容。

  • 广西北部湾经济开发区2018年中考历史真题试题(含解析)

    广西北部湾经济开发区2018年中考历史真题试题(含解析)

    中国梦是历史的、现实的,也是未来的,中华民族伟大复兴的中国梦终将在一代代青年的接力奋斗中变为现实。阅读下列材料,回答问题。材料一 五月四日下午一时半,十几个学校的学生齐集天安门,人人手里拿着一面或两面白旗,上面写着“还我青岛”“头可断青岛不可失”……第二天,北京各大专学校总罢课……六月三日,北京学生在街头演讲时被北洋政府逮捕一百七十八人……第三天,上街演讲的学生达到五千多人,社会影响加大。学生的爱国行动得到越来越多各界人士的同情和支持……这是真正伟大的历史转折点。——摘编自金冲及着《二十世纪中国史纲》(第一卷)材料二(七七事变后)20岁的张访朋投考了由广西南宁迁到桂林的黄埔第六分校,成为第十六期期的一名学生……,为了锻炼预备军官们的指挥能力,军校里不时进行沙盘作战演习……教官们讲怎么指挥作战,讲得很生动这是张访朋第一次从军官的角度去思考如何作战。——摘编自《我的抗战》节目组著《我的抗战Ⅱ》

  • 扫黑除恶专项斗争开展情况调研报告范文材料

    扫黑除恶专项斗争开展情况调研报告范文材料

    (一)领导高度重视,反应行动迅速。全国扫黑除恶专项斗争开始后,市委、市政府立即召开专题会议进行研究和安排部署,对照中、省扫黑除恶专项斗争工作要求,确定了全市扫黑除恶专项斗争工作目标(一年大见成效、两年健全机制、三年天蓝地净),成立了扫黑除恶专项斗争工作领导小组及其办公室,具体负责组织实施工作,县区和市直各成员单位也相应成立了工作机构。市委、市政府联合印发了《延安市开展扫黑除恶专项斗争实施方案》,市扫黑办制定了《扫黑除恶专项斗争组织机构及工作制度》,建立了线索排查、信息报送、案件分流、案件会商等工作制度,保障扫黑除恶斗争专项工作有效实施和有序推进。市法院、检察院、公安局采取引进来、走出去等办法对干警进行业务培训,提高基层干警执法办案水平。市检察院推行“七快”联动工作机制和重大黑恶势力犯罪案件会商机制,市法院对黑恶案件办理采取“五定一包”(定办案人员、定督办领导、定办案期限、定目标责任、定奖惩办法),提高办案质效。

上一页123...317318319320321322323324325326327328下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。