
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此题中的不等关系:现在已存有55元,计划从现在起以后每个月节省20元.若此学生平板电脑至少需要350元.列出不等式20x+55≥350.故选B.方法总结:用不等式表示数量关系时,要找准题中表示不等关系的两个量,并用代数式表示;正确理解题中的关键词,如负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过、至少、至多等的含义.三、板书设计1.不等式的概念2.列不等式(1)找准题目中不等关系的两个量,并且用代数式表示;(2)正确理解题目中的关键词语的确切含义;(3)用与题意符合的不等号将表示不等关系的两个量的代数式连接起来;(4)要正确理解常见不等式基本语言的含义.本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过,这些关键词中如果含有“不”“非”等文字,一般应包括“=”,这也是学生容易出错的地方.

解:设另一个因式为2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一个因式为2x2+x-3.方法总结:因为整式的乘法和分解因式互为逆运算,所以分解因式后的两个因式的乘积一定等于原来的多项式.三、板书设计1.因式分解的概念把一个多项式转化成几个整式的积的形式,这种变形叫做因式分解.2.因式分解与整式乘法的关系因式分解是整式乘法的逆运算.本课是通过对比整式乘法的学习,引导学生探究因式分解和整式乘法的联系,通过对比学习加深对新知识的理解.教学时采用新课探究的形式,鼓励学生参与到课堂教学中,以兴趣带动学习,提高课堂学习效率.

探究点三:作中心对称图形如图,网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.三、板书设计1.中心对称如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形把一个图形绕着某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.教学过程中,强调学生自主探索和合作交流,结合图形,多观察,多归纳,体会识别中心对称图形的方法,理解中心对称图形的特征.

方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.

解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.

方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.

解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.

我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.

教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:

解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.

(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.

一、教材说明我所执教的第五单元的最后一课,古诗二首的第一课时,《凉州词》是一首边塞诗,写的是边塞将士出征前开怀畅饮,一醉方体的情景,诗歌慷慨激昂,豪情满怀,表现出当时战争的残酷,无常和频繁,反映将士们生活的悲惨、痛苦。体现了盛唐边塞诗的特点,本节课的教学目标是:1、学生2个生字,练习写好6个汉字。2、有感情地朗读并背诵课文。3、通过读这首古诗,感悟边关将士悲苦的生活。教学重点和难点是品读悟诗情。

四、说教学方法: 根据新课程标准和理念,并结合学生实际情况,本节课采用: 1.范读教学法,短文生动活波,想象丰富,意蕴深刻,宜于诵读体味。2.设疑引导法:通过设疑引导,鼓励学生多角度探究短文寓意。此外我还用多媒体手段辅助教学。诵读法:短文生动活波,想象丰富,意蕴深刻,宜于诵读体味。讨论法:针对教师提问展开讨论讲述法:通过讲故事的方法。五、说教学过程:(一)故事导入,我来猜多媒体动画展示“女娲补天”的故事,让学生竞猜,并拓展举例,你还读过那些神话故事!如后羿射日,大禹治水,精卫填海,盘古开天辟地,嫦娥奔月等,这些故事都有着雄奇的想像与夸张,但又和现实有一定的联系,它是在人们头脑中经过加工,改造过的现实。今天,我们一起学习《精卫填海》。 设计意图:此环节主要是激发学生的兴趣,拉近学生与神话、与山海经的距离。另外,神话与 传说、民间故事有所不同,教师通过通俗易懂的语言帮助学生对这一概念有一个初步的认识,再自然引出课题。

一、激趣导入:引导学生说说哪些东西是可以在夜晚飞行的?从而引出“飞机为什么能在夜晚安全飞行?”的问题来激发学生的好奇心,并揭示课题。二、初读课文:以“飞机夜行和蝙蝠夜行的秘密是什么?”的问题引导学生自主阅读课文,结合课文,借助学生已有的知识经验和预习情况,初步理解有生字组成的词语。然后指导学生把课文读通顺、读流利。三、再读课文:学生在读通课文的基础上让学生说说课文是从哪些方面来说明飞机夜行是从蝙蝠身上得到的启示的,从而理清课文的思路,初步了解各段大意,整体感知课文内容,对蝙蝠在夜晚飞行的原理有了初步的认识。接下来我重点讲讲第二课时的教学设计。这一课的 教学中,我将以设疑悬疑──悟疑解疑──创造性思维训练,这种教学思路引导下,使学生充分发挥自己的主体作用,学生的积极性、主动性得到了充分的施展。学生不仅读懂了课文,认识也逐步加深。通过以下几个教学环节来完成教学任务。

这篇文章的编排价值,不光体现了它的人文性,知识性,更多的还是作为提升学生语文素养,发展学生的阅读能力的载体。这篇文章的语言很生动,很有特色,尤其是描述“我”被鹅追赶的一次经历中,作者将鹅的神气十足、胆大妄为,以及“我”的狼狈不堪、慌忙逃窜,全都通过人物的语言、动作、神态、心理活动的细致刻画,以及对鹅的动作的传神描写,活灵活现地展示在读者面前。因此,本课的可读性非常强,课上,应引导学生进行充分的感情朗读,积累优美、生动的语句,使学生在读中思,读中想象画面、场景,在思中悟,感悟作者的表达、遣词造句的准确生动,以及作者用生动的故事为依托,阐释深刻的道理的写作方法。二、 学情分析1、进入五年级下册,学生已具有了一定独立阅读能力,在阅读实践中能运用一些阅读的技能进行个性化的阅读。在以往的课堂教学中学生的自读,自悟、勾画、批注、交流、评价的阅读方法有一定的积淀,这节课给学生提供了一个进行阅读实践的更好历练机会。2、针对这篇文章来说,虽然故事的确是浅现生动的,但文章并没有具体阐释出作者要表达的意图,并没有对故事进行太多的分析,也没有直接揭示出道理,学生必须联系上下文,找到重点关键的、含义深刻语言文字中作对比分析,透过现象看本质。这对于小学生来说理解起来有一定的难度。

第二课时 (一)、导入:中国古代神话传说中的女娲赋予人类生命,又为了人类幸福,历尽辛苦。而在古希腊神话故事中,也有一位带给人类幸福和光明的神,还记得他是谁吗?开启神话故事的窗口,激发阅读期待,激起学生对神话故事一种美的向往之情。 (二)、复习生词,学写生字通过分层设计复习词语,既使学生再现所学知识,又为学习新知识扫除障碍,重点强调“脏”是个多音字。指导书写:重点指导:“膝”“焰”“败”让学生整体观察字的特点,找出每个字的书写特点,力求将字写正确,写美观,同时注重书写反馈。(三)、直入重点,感悟“英雄”形象1采用大问题情境下的板块式教学模式,让学生默读课文,思考:你从哪些词句中感受到了普罗米修斯是一位英雄的?找一找,画一画,把感受写一写。然后检测学生对课文内容的理解,之后对本课进行深入的学习。

四、说教学方法: 1.提纲挈领法。结合略读课文的教学特点,我引导学生抓住两则故事的发展顺序进行品读感悟,实现对故事内容及道理的准确感知。2.质疑导学法。我精心提炼一些问题,让学生作为探讨交流的突破口,引导学生深入故事,感受故事蕴含的深刻主旨,受到情感价值观的教育。 3.自主探究与交流延伸相结合学习法。在阅读故事的过程中,学生自主探究学习,感知故事内容,通过与同学、老师交流,不断深化对故事内涵的体会,再将从课文中获得的感悟延伸到生活中,想象带入,想象与故事角色对话,从而得出启示,感悟道理。

有感情地朗读课文,理解重点词句,了解爬山虎脚的特点。过程与方法目标:以学生为主体,遵循阅读教学的原则,让学生充分地与文本交流,在自读、感情朗读、品读等形式多样的阅读中,理解课文内容,积累精美的语言文字,学习作者观察和表达的方法,运用到自己的习作中去。情感目标:激发学生留心观察的兴趣,做生活的有心人。教学重点是:通过对词句的理解,了解爬山虎脚的特点。教学难点是:爬山虎是怎样用脚向上爬的。此篇课文的教学设计为两课时,第一课时要让学生初读课文,扫清字词障碍,在读中理清文章的结构层次,整体感知,而后感情朗读。第二课时直扑重点,学习课文三至五自然段爬山虎脚的部分,通过小组合作学习探究,在读中充分体会到作者对爬山虎的观察入微,而且是连续观察了很长时间。以下我着重对第二课时的教学设计作进一步说明。

(一)联系生活、激趣导入新课标指出,应拓宽语文学习和运用的领域,注重跨学科的学习和现代化科技手段的运用,使学生在不同内容和方法的相互交叉、渗透和整合中开阔视野,提高学习效率,初步获得现代社会所需要的语文实践能力。上课前,学生在以前已经学过口语交际介绍自己的家,学生会非常自豪,能踊跃地说。再加上课前对蟋蟀的已知了解,学生已经知道蟋蟀的歌声动听,对蟋蟀的可爱、有趣早已铭记在心。这样二者结合起来,能很好地调动学生学习的兴趣,实现旧知迁移,为学生转换角色,改变学习方式作准备,也为学生发展口语作准备。这样让学生把自己的家和早已熟悉的蟋蟀的住宅联系起来,自然而然地导入课题。

第一部分 说教材教材简析《繁星》选自巴金的散文集《海行杂记》。这是一篇写景抒情的记叙文,写了作者在不同时间,不同地点看繁星时的不同感受。字里行间饱含着作者爱星天的真情实感。课文虽然只有400个字左右,却有极丰富的内容,是培养学生观察、想象能力和朗读能力的好材料。教学目标1、 知识目标2、 :学会生字,3、 理解新词,4、 了解作者三次看繁星的不同5、 情景及感受。6、 能力目标7、 :通过观察、自读、精思、讨论、评价、欣赏、背诵等方式来培养和提高学生的观察、想象能力、朗读能力和理解句子含义的能力。8、 情感目标9、 :抓住作者丰富的联想,10、 体会他爱繁星的思想感情,11、 从而12、 激发学生热爱大自然的情感。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。