我们学校积极响应“亿万青少年阳光体育运动”号召和苏州市三项规定,切实保证我们学生每天一小时体育锻炼时间。热爱体育、参加锻炼、崇尚运动应该成为广大青少年的时尚。我们要认真上好每一节体育课,在环形跑道上飞奔,在绿茵球场上驰骋,在篮板下腾跃,舒展每一个关节,激活每一个细胞,强健我们年轻的体魄展示我们青春的活力!我们要充分用好大课间,伴随着明快的音乐,以班级为单位有序地进入操场。广播操或跑操结束后,大家有序地分散到校园的各个指定场地参加分项体育活动。随着动感音乐的响起,师生开展丰富多彩的活动,让老师和学生们的脸上洋溢着幸福的笑容。有一个真实的故事,同样告诉了我们体育运动的重要性与好处。法国著名作家雨果,年青时很有才华。29岁就写了长篇小说《巴黎圣母院》,这本小说轰动了整个法国。之后他还写了很多小说、散文、诗歌……可正当他激情奔放的时候,心脏病却突然发作了。许多人看到雨果发青的脸色,都为他感到惋惜。人们都以为巨星就要坠落了。可雨果并不悲观,他在医生的指导下,每天坚持跑步、游泳、爬山。没多久,雨果的病情渐渐好了起来。于是他又提起笔重新写作。60岁创作了文学名著《悲惨世界》,80岁创作了戏剧《笃尔克玛》。最终他活了84岁。人们看到雨果40岁得了心脏病,最终却成了一个长寿者,都赞叹不已地说:“这真是一个奇迹。”
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
尊敬的老师、亲爱的同学们:大家早上好!今天,我在国旗下演讲的题目是“做好准备、迎接第一次月考”。在这飘散着青草芳香的阳春三月。高三的学长、学姐们,为了心中的高考目标,又一次蓄势待发、做足了一切准备,准备迎接第二次模考。高二、高一的同学们在经历了一个月,新鲜、紧张的学习后,为了证明优秀的自己,检验走班制学习的效果,也要面对新学期的第一次月考了。良好的开端是成功的一半。如何才能做好准备,在考试中展现自己的实力呢?第一、合理安排时间、注重学习效率。只有课堂上跟上老师的节奏,认真听讲。课后才能有充足的时间去复习消化。有的同学把熬夜当成了家常便饭,不仅影响了身心健康,而且第二天上课时变成了“睡仙”、一睡不醒。这种事倍功半的学习方法、效率肯定不会高。
尊敬的各位领导,各位同仁,亲爱的同学们:大家早上好,今天我演讲的题目是《择一良言,树立志向》。在我不到两年的执教生涯中,有很多可爱的学生问我:“老师,未来的我能成为什么样的人”,但令我些许心痛和无奈的是还有很多学生对我说:“老师,我不可能成为你说的那种人”,这难免让身为人师的我顿感惋惜。你们的人生才刚刚起步,才是小荷初露的尖尖角,最是人生锋芒初露,大放异彩的时候,为何因为一句简单的不可能,就轻易地否定了自己未来的万千种可能。其实,身为人师的我们比谁都清楚的了解,每一位学生都是一颗及其优秀的种子,只是花期与品种不同而已。所以,也请在场的每一位学子们,都深信一点:你想成就怎样的自己,那就一定会成就怎样的自己。要想成就自己就需要我们在日常的学习生活中找到一个人生的方向和支撑,也就是古人常说的“志”。“人无志不立,鸟无翅不飞”,中国传统文化博大精深,源远流长,“志”作为中华民族的精神象征,是万千中华儿女的傲骨。为此,高中部特别印制励志名言,激励广大学子进步。虽然这些名言大多时候不常被孩子们们挂在嘴边,可是我们很欣慰地看到志向的种子却在孩子们的内心渐渐发芽生根。
俗话说:“严师出高徒。”虽然教官们对每一个动作都有严格的要求,但是我们有的动作做的还不规范,不到位。这就要求我们必须严格要求,刻苦练习,争取把每一个动作都做好,用实际行动回报教官们的一片苦心。 不管前方是风雨,还是险滩,我们将与教官们走完这精彩的_天。让岁月珍藏一份经典的画卷。保存一份完美的回忆。我们坚信_天后的我们将会更完美。让我们用心去呼唤,让暴风雨来得更猛烈些吧!我们已经作了最充分的准备,用自己坚强的意志去挑战,去适应,去完美这_天的精彩而又刺激,艰苦而又快乐的生活。
一.教学内容方面:本模块主要以家乡为题材,围绕方位,位置及形容词的比较级等语法现象,开展听说读写活动。今天我讲的这节课是Module2 的第二单元,是一节读写课。学生在经过第一单元的学习后,对形容词比较级的语法现象已经有了一定的认识和掌握。所以本节课主要是借助模块中的学习材料,对学生进行阅读训练,帮助学生掌握关于方位,位置的语法现象,并指导学生用所学语言简单介绍自己的家乡。所以整个课堂教学我设计了两个大的活动。一是,引导学生精读教材文章,二是,读后引导学生参照范例,进行仿写训练。
2、课标要求对于本节课内容课标要求:探索并掌握两个三角形全等的条件;注重所学内容与现实生活的联系,注重经历观察、操作、推理、想像等探索过程。初步建立空间观念,发展几何直觉;在探索并掌握两个三角形全等的条件,与他人合作交流的过程中,发展合情推理,进一步学习有条理的思考与表达。二、学生分析 1、七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要不断创造条件和机会,让学生发表见解,充分发挥学生学习的主动性,体现学生的主体地位。
二、说教法学法根据本节课教学内容和学生的思维特点,新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”。为实现教学目标,有效地突出教学的重点,突破难点,依据现代认知科学理论,我主要运用以下几种教法和学法,在教学中,我主要采用创设情景法,引发学生学习的兴趣和学生学习的积极思维的动机。教师精讲,学生多练,体现了学生主体,教师主导的教学原则。教学相长,我主要采用自主探究,合作交流的学习方法。动手操作,自主探求与合作交流是学生学习数学的重要方式,遵循了学生的认知思维规律,可以充分调动学生的主动性和积极性,给学生较大的空间进行探索性的学习,让他们在具体情景中进行独立思考。
一、说教材主要内容新北师大版第三章第三节二、说教材分析学生通过对本节内容的分析认识,感受数学教学内容分析1、说教学主要内容结合具体情境,在解决实际问题的过程中体会加减混合计算与实际生活的联系,感受数学在实际生活中的作用。2、说教材编写特点这节课在本单元中是新课的第三课,知识点更难,它的内容更加贴近生活,能够让学生结合具体的情境,灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断,使学生感受到学习数学的意义和价值,激发学习数学的兴趣。3、说教材内容的核心数学思想让学生能够根据具体情况,灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断。
【一、说教材】《蚂蚁做操》是北师大版数学三年级上册教材第六单元《乘法》第52页的内容。在此之前,学生已经学习了表内乘法,并学会了整十、整百数乘一位数的口算方法,这为过度到本课的学习起到了铺垫的作用。因此,本课题的理论、知识是学好以后课题的基础,也是本单元的起始课,它在整个教材中起着承上启下的作用。根据本教材的结构和内容分析,结合着三年级学生的认知结构及其心理特征,我制定了以下的教学目标:1.通过“蚂蚁做操”具体情景图,探究并掌握两、三位数乘一位数(不进位)的计算方法,并能正确计算。2.借助点子图直观模型,理解乘法竖式的每一步含义,进一步体会乘法计算的多样性。3.在交流各自算法的过程中,学会表达自己的想法,逐步养成认真倾听、善于思考的好习惯。
3、根据这样结果,请你估计一下自己的腰围大约是多少厘米,同桌合作量一量。这一环节的量:在量腰围、头围的实践活动中,让学生自主选择测量的工具和方法,并在小组交流中说一说测量的过程。活动形式也灵活多样,可以一个人单独操作,也可以小组合作完成,只要能测得结果,都给予肯定,而且测量的内容也是生活中常见的。最后,完善认知,统一方法。结合实际操作使学生知道可以有不同的起点,但只能描一周,巩固周长的含义,培养学生的操作技能。4、小结。通过前面的学习,老师发现同学们善于观察、爱动脑筋,所以想邀请你们参加下面的闯关比赛,想参加吗(四)闯关训练,深化新知。第一关:用彩色笔描出下面图形的边线。
一、教材分析:《小熊购物》是北师大版三年级上第1单元的第一课时,本单元学习内容是在学生学习了加、减、乘、除法的基础上进行的,这是学生第一次接触两步运算题,教材不是以单纯学习计算法则的形式出现,而是通过“小熊购物”主题图呈现生活情境,将教学内容和解决问题过程有机结合,教材列举了用分步算式和综合算式得出结果,在综合列式方法中,出现了两种情况:一种是将乘法放在前面,另一种则将乘法放在后面。这样做的目的是为了让学生了解在加法和乘法的综合算式中,无论乘法在前还是在后,都要先算乘法,再算加法。二.学情分析:学生已经掌握表内乘法,能熟练地进行加、减、乘、除法的运算,并具备提出简单问题和解决问题的能力,这些都是学生学习本课知识的前提和基础。从学生熟悉的购买商品的事例中,由直观到抽象,层层深入,经过动脑想、动笔算,抽象出混合运算的意义及运算顺序。
(三).实践应用,拓展延伸首先出示一个基本练习题,让学生独立计算,再抽几题说说口算方法,教师适时点拨,目的在于巩固本节课的教接下来解决实际问题,学生先独立解决第一小题,然后组织交流。第二小题,先让学生同桌讨论,再全班汇报交流,鼓励学生说出不同的思考方法。此处,注意数学与生活联系,学生通过自主选择内容,使不同的学生学习不同的数学,能用数学知识来解决实际问题,培养学生的应用能力。有了前面的基础,又对知识进行拓展延伸。这样一道解决日常生活中的实际问题,培养学生自觉运用数学知识解决问题的意识,提高了学生的应用意识,加深了对知识的掌握,同时又拓展了学生的思维,在此也渗透了德育教育。关于填表这个练习题,先让学生独立填表,教师注重对个别学生填表方法的指导和帮助,再反馈交流。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。