证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直线AD垂直平分线段EF.方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).解析:(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.解:(1)因式分解的方法是提公因式法,共应用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需应用上述方法2016次,结果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法总结:解决此类问题需要认真阅读,理解题意,根据已知得出分解因式的规律是解题关键.三、板书设计1.提公因式分解因式的一般步骤:(1)观察;(2)适当变形;(3)确定公因式;(4)提取公因式.2.提公因式法因式分解的应用本课时是在上一课时的基础上进行的拓展延伸,在教学时要给学生足够主动权和思考空间,突出学生在课堂上的主体地位,引导和鼓励学生自主探究,在培养学生创新能力的同时提高学生的逻辑思维能力.
方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、板书设计1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(等角对等边).2.反证法(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.解决几何证明题时,应结合图形,联想我们已学过的定义、公理、定理等知识,寻找结论成立所需要的条件.要特别注意的是,不要遗漏题目中的已知条件.解题时学会分析,可以采用执果索因(从结论出发,探寻结论成立所需的条件)的方法.
方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正()A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】 多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是()A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.
解析:由分式有意义的条件得3x-1≠0,解得x≠13.则分式无意义的条件是x=13,故选C.方法总结:分式无意义的条件是分母等于0.【类型三】 分式值为0的条件若使分式x2-1x+1的值为零,则x的值为()A.-1 B.1或-1C.1 D.1和-1解析:由题意得x2-1=0且x+1≠0,解得x=1,故选C.方法总结:分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、板书设计1.分式的概念:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有无意义的条件:当B≠0时,分式有意义;当B=0时,分式无意义.3.分式AB值为0的条件:当A=0,B≠0时,分式的值为0.本节采取的教学方法是引导学生独立思考、小组合作,完成对分式概念及意义的自主探索.提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程中获得了解决新知识的途径.在这一环节提问应注意循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成.
解析:(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.15,进而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.三、板书设计1.公因式多项式各项都含有的相同因式叫这个多项式各项的公因式.2.提公因式法如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种因式分解的方法叫做提公因式法.本节中要给学生留出自主学习的空间,然后引入稍有层次的例题,让学生进一步感受因式分解与整式的乘法是逆过程,从而可用整式的乘法检查错误.本节课在对例题的探究上,提倡引导学生合作交流,使学生发挥群体的力量,以此提高教学效果.
分式1x2-3x与2x2-9的最简公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最简公分母为x(x+3)(x-3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最简公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最简公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
探究二:100以内数的大小比较。1、 (媒体出示课本第39页例8鸡蛋图。)师:看这鸡蛋图,谁知道哪边的鸡蛋多一些?你是怎么比较的?(学生可能回答:(1)根据鸡蛋图比较。(2)根据数的顺序比较。(3)根据数的组成比较。)(根据学生回答,点击○媒体出示答案。)2、 师:刚才我们看着鸡蛋图比较了两个数的大小,那如果没有图,我们会不会直接比较两个数的大小呢?我们请计数器来帮忙,谁来拨?(媒体出示计数器)师:谁能来说说每个数位上数的意义,再进行比较,说说比较的方法。(学生已经有了比较20以内数的大小的基础,教师引导学生在此基础上说出:28是由2个十和8个一组成,26是2个十和6个一组成,所以28>26;或者根据数数时28在26后面,所以28>26。)(点击表示28的计算器图,媒体出示28是由2个十和8个一组成;点击表示26的计算器图,媒体出示:26是由2个十和6个一组成;点击“26是由2个十和6个一组成”,媒体出示:28>26。)(师板书:28>26)
在这一环节的设置,我考虑到教育的面向全体性。让音乐教师只通过40分钟的时间就能了解,教育,检测每一个学生,这是不现实的。所以我采用了“兵带兵”的形式,建构互助式的学习模式。实践中,我发现这种方式还是需要进一步改进的。一、这样造成了课堂的拖沓。规定时间内,互助学习不能完成。二、获得的信息不够准确。再次,动作创编的“收”与“放”本节课我采用过全放的模式,结果造成了课堂的混乱。而且,学生创编的质量不高。后将“收”与“放”相结合,效果就很好。教师的主导,学生的主体都得到了很好的体现。有目的的引导学生创编,是低年级音乐教学的一个较为适宜的教学经验。最后,教学的不足教师语言需要进一步的优化。作为教师,一定要讲适合该年级段学生的语言。我在本节课,提问了“情绪、速度”。实际上,并不适合一年级小学生。换成“高兴、难受”“快、慢”会更好。
(一)激趣导入。 一、创设情境,引入新课(课件第2张)1.谈话:师:同学们,这节课我们先来做一个抢答游戏,看你们对以前学过的知识掌握的怎么样。2.抢答:请同学们以最快的速度说出下面的数有几个因数。师出示数,学生抢答因数的个数。3.思考:(1)一个数的最小因数是几?最大因数是几?(课件第3张)(2)一个数的因数是有限的还是无限的?(3)怎样找一个数的因数?生1:一个数是最小因数是1,最大因数是它本身。 生2:一个数因数的个数是有限的。生3:找一个数的因数,用这个数依次除以1,2,3,4……商如果是整数,除数和商都是这个数的因数。 【设计意图】用抢答游戏的方式引入课题,引起学生的兴趣,通过对旧知识的复习,为下面要学习的质数与合数做准备。4.师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。(板书课题) . (二)探究新知 1. 找出1—20各数的因数,看看它们的因数的个数有什么规律。(1)学生小组内交流,写出1——20各数的因数,看看它们的因数的个数有什么特点。(课件第4张演示)1的因数有:1 11的因数有:1,11 2的因数有:1,2 12的因数有:1,2,3,4,6,12 3的因数有:1,3 13的因数有:1,13 4的因数有:1,2,4 14的因数有:1,2,7,14 5的因数有:1,5 15的因数有:1,3,5,15 6的因数有:1,2,3,6 16的因数有:1,2,4,8,16 7的因数有:1,7 17的因数有:1,17 8的因数有:1,2,4,8 18的因数有:1,2,3,6,9,18 9的因数有:1,3,9 19的因数有:1,19 10的因数有:1,2,5,10 20的因数有:1,2,4,5,10,20
(一)复习导入 1.师:我们学过了因数的有关知识,下面老师就检验一下,看你们学得怎么样?(课件第2张)(1)24的因数有(1,2,3,4,6,8,12,24),30的因数有(1,2,3,5,6,10,15,30),24和30的公因数有(1,2,3,6),它们的最大公因数是(6)。(2)分数的分子和分母同时(乘)或(除以)一个(相同的数)(0除外),分数的大小(不变),这叫做分数的基本性质。【设计意图】复习旧知,约分的根据是分数的基本性质,要约成最简分数,需要分子和分母同时除以它们的最大公因数,所以复习环节设计了这两个知识点的练习,为学习新知识做准备。2.大家一定都喜欢孙悟空吧!你知道孙悟空最大的本事是什么吗?(72变)这节课我们就来创造第73变——变分数!(二)探究新知 1、探究约分的方法。(1)把化成分子和分母比较小且分数大小不变的分数。(课件第4张) 小组讨论:你是怎么想的?汇报交流(课件第5张)生1:可以用分子和分母的公因数(1除外)去除。生2:我用24和30的公因数2去除,,然后再用12和15的公因数3去除, 生3:我直接用24和30的最大公因数6去除。(2)用自己的话说说什么是约分?(课件第6张)生1:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(一)复习旧知,导入新课。师:同学们,上节课我们认识了体积和体积单位,请你填一填这两道题,看看你学得怎么样。(课件第2张)1.常用的体积单位有(立方厘米)、(立方分米)、(立方米),可以分别写成(cm³) 、(dm³)、 (m³)。2.棱长是1cm的正方体,体积是(1cm³)。3.棱长是1dm的正方体,体积是(1dm³)。4.棱长是1m的正方体,体积是(1m³)。【设计意图】1dm³是多少cm³呢?这节课我们就来研究一下体积单位间的进率。(板书课题)(二)探究新知1.探究立方分米和立方厘米间的进率:(课件第3张)(1)下图是一个棱长为1dm的正方体,体积是1dm³。想一想,它的体积是多少立方厘米呢?(2)小组讨论,你是怎样想的?(3)汇报交流:(课件第4张)生1:如果把它的棱长看作是10cm,可以把它切成1000块1cm³的小正方体。10×10×10=1000.生2:它的底面积是1dm²,就是100cm²,100×10=1000,一共是1000cm³。1dm³=1000cm³【设计意图】用小组讨论的方式,让学生从讨论的过程中找到解决问题的方法,培养学生的语言表达能力、思维能力。2.你知道1m³等于多少立方分米吗?(课件第5张)生1:把棱长是1m的正方体,看作棱长是10dm的正方体,10×10×10=1000dm³。1m³=1000dm³。 生2:棱长是1m的正方体,底面积是1m²,就是100dm²,100×10=1000dm³,一共是1000dm³。生3:1m³=1000dm³ 3.整理计量单位之间的进率。(1)小组讨论:到现在为止,我们已经学习了哪些计量单位?请整理在表中。
(一)复习旧知,导入新课。1、师:同学们,你们还记得《乌鸦喝水》的故事吗?我们先来看一看这个故事吧!(课件第2张播放视频《乌鸦喝水》)【设计意图】用视频引入课题,激发学生的学习兴趣。2、乌鸦是怎么喝到水的?为什么?(课件第3张)生1:乌鸦把石子投进水罐中,水面升高了,乌鸦就喝到水了。生2:这说明石子占了一定的空间,所以水面会升高,乌鸦才能喝到水。师:这节课我们就来研究一下体积和体积单位。(板书课题)(二)探究新知1.小组实验并观察:(课件地4张)(1)取两个同样大小的玻璃杯,先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒进第二个杯子里,会出现什么情况?为什么?(2)汇报交流:(课件第5张)生1:第一个杯子里的水不能全部倒入第二个杯子里。师:你知道为什么会出现这种现象吗?生2:鹅卵石占了一定的空间,所以第一个杯子会剩下一部分水。【设计意图】用实验的方式,让学生从实验的过程中发现现象并进一步思考原因,从而找到规律,培养学生的观察能力、思维能力。2.下面的洗衣机、影碟机和手机,哪个所占的空间大?(课件第6张)洗衣机所占的空间最大。3.引入体积的意义:师:物体所占空间的大小叫做物体的体积。师:上面三个物体,哪个体积最大?哪个体积最小? 生:洗衣机的体积最大,手机的体积最小。4.学习体积单位(课件第7张)(1)怎样比较下面两个长方体体积的大小呢?
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
(一)说教材与教情从本单元的题目How was your weekend?就可以知道本单元的语言目标是讨论曾经的活动或过去发生的事件,要求学生掌握的语法知识就是一般过去时。一般过去时这一时态在Go for it!这套书里这是第一次出现,因此要让学生把一贯以来他们所熟悉的一般现在时暂时搁浅,而用新学的一般过去时来表述发生的事件,无非是本单元的重点也是本单元的难点所在。要攻克这一重难点的关键,我认为在于能使学生对动词的过去时具备一定的熟巧度,并且这种熟巧度不仅应该表现在听说能力上,也应该体现在阅读和写作能力当中;不仅要在听和读的语言输入过程当中能够对这一时态有较强的敏感度,也要在说和写的语言输出过程中能够比较自然和自如地运用这一时态。对一般过去时在语言中运用的这种熟巧度实际上也就是本单元预期达到的语言技能目标。在本单元整体的知识和技能的大目标下,本课时作为本单元的第三课时,也就是本单元最后一个课时,它所覆盖的课本内容是Section B中的听力、阅读和写作。
五. 教学过程1.预习展示(Review)在幻灯片上写出预习目标,然后让他们展示他们自己所预习的有关职业名称的词汇. 小组派代表发言.(设计目的:吸引学生注意力,活跃课堂气氛。使课文引入自然)2.检测成果(Checking)(1)展示本课时的单词图片,让学生快速完成。(2)让同学领读,齐读,男女同学读,在齐读。(设计目的:巩固单词的读音,以及纠正错误的读音,加深记忆力.)3.学习新句型(Presentation)用幻灯片出示重点句型,让学生观察、齐读、what do you do ?I’m a student.What do you want to be ? I’m want to be an actor.这些重点句型。(设计目的:培养学生认真观察动脑思考学习如何就职业提问,以及对自己的理想职业进行提问。)4.练习句型(Pattern drills)你是做什么的?What do you do ? 你将来想做什么? What do you want to be ?