
二、说学情六年级学生已逐步形成了自己的学习体系,具备了对具体事物的认知能力,但学习缺乏稳定性,所以,针对这种趣味性较强的文章,关键在于激发学生兴趣,创设出引人入胜的教学情境。三、说教学目标1.读通课文,积累文中的好词佳句。2.有感情地朗读课文。3.理解课文内容,了解藏戏的特点以及藏戏的形成过程。4.体会传统戏剧艺术独特的魅力和丰富的文化内涵。四、说教学重难点1.理解课文,体会藏戏的特色以及艺术魅力。(重点)2.学习文章准确的说明和生动形象的描述,积累语言,领悟表达方法。(难点)五、说教法学法1.《藏戏》是一篇略读课文,主要讲了藏戏的形成和藏戏的特色。文章结构清晰,语言生动传神,富有文学色彩。教学本课,我采用先“明确学习任务,再学习课文”的方法,让学生从一开始就明确了学习任务,将精力全部投入到学习中来,更好的完成教学任务。

这一环节设计目的在于让学生了解到规则就存在于我们的日常生活之中。培养学生通过观察生活获取信息的能力,开发多方面的学习资源,扩充学生的知识面。课前学生把收集到的规则方面的资料汇总到课外调查表上,学生可以对游戏类、交通类、环保类、体育类等资料进行汇报,活动后让学生交流收获?4、走进《中小学生守则》,领悟学校规则课程是要帮助学生解决生活中的实际问题。这一环节是在学生探究性的学习中突破重难点的关键环节。首先教师让学生获悉与之关系密切的学校规则是《中小学生守则》。通过展示课件图片让学生把图片与守则内容连起来。通过核对,引导小组讨论:小学生守则的意义,并结合实际说出对哪一条的理解最深刻。在学生的交流汇报中,教师有目的地引导学生回答:如果没有这条规则,学校可能会出现什么情况,对每个同学可能有什么影响。举个例子说明一下。让学生把单一的“规则”迁移到日常行为上,达到自我教育的目的。

一、民政工作总结(一)低保、特困工作今年是低保、特困审核确认权下放的第一年,为完善社救服务机制,提高社会救助效率和效能,实现审核去人和监督管理职能的有效分离,切实兜住兜牢兜好民生保障底线,我乡于2023年3月份成立了xx乡城乡低保及特困人员审核确认权限下放工作领导小组。加强相关经办人员的培训工作,细化经办流程,并于6月开始对全乡在册低保、特困人员进行复审,目前正在收集材料初步审核当中。(二)2023年上半年救助资金发放情况1、城乡低保工作:1—6月份我乡共发放农村低保资金xxxxxxx元,城镇低保资金xxxxx元,新增农村低保x户,x人,退保x户,x人,有x户、x人正在申请待办中,截至6月底,我乡农村低保对象总数为xxx户,xxx人,城镇低保对象总数为x户,x人。2、农村五保供养工作:1—6月份我乡共发放农村五保供养资金xxxxxx元,其中集中五保供养资金xxxxx元,分散五保供养资金xxxxx元。五保低收入居家养老金xxxx元,五保失能半失能补贴xxxxx元。死亡等原因退保x人,截至6月底全乡共有农村五保供养对象xx人,其中散养xx人,集中供养x人。3、孤儿工作:1-6月共发放孤儿生活费补贴xxxxx元,目前全乡在册孤儿x人。4、临时救助工作:1月、3月各有x人申报县级临时救助,6月x人申报乡级临时救助。5、精减退职工作:截止6月底全乡在册精简退职人员xx人,1-6月共发放精简退职人员生活费xxxxx元。6、高龄津贴发放:第一季度我乡共申报新增高龄老年人补贴xx人,死亡高龄老年人xx人,发放高龄老年人补贴xxxxx元,截至第一季度,我乡共有高龄老年人xxx人,其中80-89周岁xxx人,90-99周岁xx人,100周岁x人。7、两残补贴发放工作:目前我乡共有xxx名重度残疾人享受重度残疾人护理补贴,1-6月全乡共发放xxxxxx元;有xxx名低保家庭残疾人享受困难残疾人生活补贴,1-6月全乡共发放xxxxx元。

(二)推进铸牢中华民族共同体意识理论研究体系建设一是以铸牢中华民族共同体意识为主线,进一步加强*博物馆——*市铸牢中华民族共同体意识教育实践基地的建设,将文物背后的民族融合发展历程与传承弘扬中华优秀传统文化有机结合,将*博物馆打造成为集铸牢中华民族共同体意识宣传教育、青少年研学交流、旅游打卡的阵地。*年,计划建设一家*县铸牢中华民族共同体意识教育馆。二是与*职业学院积极配合,进一步加强铸牢中华民族共同体意识研究基地*工作站建设。聚焦铸牢中华民族共同体意识的理论与实践研究,挖掘和整理*地区各民族交往交流交融历史,努力形成一批理论和实践成果,为我县深化民族团结进步教育、中华民族共同体建设提供智力支持。(三)深入落实、实施“三项计划”一是落实各族青少年交流计划方面。协调教育、团县委等部门,拟定*年青少年交流计划。持续组织开展各类各族青少年主题交流活动、社会实践交流活动,各族青少年志愿服务交流活动,积极开展结对帮扶交流活动。

根据《中华人民共和国劳动合同法》,就甲方聘请(以下简称乙方)为甲方兼职会计,甲乙双方在自愿、平等、协商一致的基础上,签订本合同。甲方承诺甲方所介绍公司有关情况均为真实的,不存在隐瞒或误导现象;乙方承诺乙方所介绍自身的一切情况及向甲方提供的一切资料均为真实的,不存在隐瞒或误导现象。

第一条 合同期限1.1 本合同有效期为_________年,自_______年_______月_______日至_______年_______月_______日止。其中试用期为_______个月,自_______年_______月_______日至_______年_______月_______日止。第二条 工作岗位、工作职责2.1 乙方在甲方公司担任兼职会计工作。乙方须按照通常会计职责及甲方确定的岗位责任,完成工作。2.2 乙方的主要工作职责包括但不限于:按会计制度规定设置会计科目,按月出具中文财务报表;计算财务成果及各种税金,提醒按期缴纳各种税款;按月做好财务状况分析;指导出纳的工作等。

(二)乙方权益和义务:1.遵守甲方规定,服从甲方管理,按合同要求认真履行岗位职责(工作任务);2.享受甲方根据乙方自身条件和岗位情况支付的工作报酬;3.劳动合同期满,根据甲方工作需要,按平等自愿的原则经双方同意可继续签订计划外用工聘用合同。

二、教学目标24时记时法与12时计时法的互换是本节课的一个教学难点,基于对教材的理解和学生的学习基础,特制定如下的教学目标;1、知识与技能:结合生活经验,明确12时计时法和认识24时记时法,使学生发现和理解24时记时法与12记时法之间的联系与区别。能够对两种记时法所表示的时刻进行换算。并能结合具体情境,推算出从一个时刻到另一个时刻所经过的时间。2、过程与方法:在活动中培养学生主动发现问题、探究问题、解决问题的能力。3、情感、态度与价值观:逐步养成遵守作息制度和珍惜时间的良好习惯,建立初步的时间观念。教具:多媒体课件、时钟三、重点难点教学重点:认识24时记时法,发现和理解24时记时法与普通记时法之间的联系与区别。教学难点:能正确地把24时记时法与12时记时法所表示的时刻进行相互转化。

二、学情分析学生在学习本课之前,已经熟练掌握了两位数乘两位数与三位数乘一位数的竖式计算方法,本节课是将已有知识迁移到两、三位数乘法的计算学习中。计算上难度不是很大,所以应该放手让学生自主探索计算方法。但学生可能会在估计积的范围和建立各种算法间内在联系上出现问题,特别是算法中出现的表格法要让学生建立与其他方法的联系上会比较难。三、教学目标1.能结合具体情境估计两、三位数乘法的积的范围。2.探索两、三位数乘法的计算方法,能正确计算,并乐于与同伴交流算法。3.培养计算兴趣和良好的计算习惯,提高利用乘法运算解决实际问题能力。三、教材处理在理解尊重教材的基础上,适当整合并创造性使用教材:1、在情境创设中加入翟志刚的视频图片。2、变基础练习试一试“先估后算“为”先算后估“。【课件出示】

(1)、创设情境,提出数学问题。出示主题图,中秋节到了,淘气和笑笑通过打电话的方式来表达对远方亲人的思念,从这幅图中你能得到哪些数学信息,能提出什么数学问题。学生很容易就找到数学信息“笑笑打国内长途,每分钟0.3元,共花5.1元;淘气打国际长途,每分钟7.2元,共花54元。”根据这些信息你能提出哪些数学问题呢?学生可能会说“笑笑打电话的时间是多少分?淘气打电话的时间是多少分?”还有的同学会提出“笑笑和淘气谁打电话的时间长?”等等,你能估一估淘气和笑笑谁打电话的时间长吗?(2)估算谁打电话时间长?通过估算,培养学生的估算意识,提高估算能力,丰富学生的素养,发展数感。在这里我分为三步:首先让学生说说是怎样估算的;其次指名学生说说估算的过程;最后评价和鼓励估算方法的合理性。

(1)上午9时的温度是多少?12时呢?(2)这一天的最高温度是多少?是在几时达到的?最低温度呢?(3)这一天的温差是多少?从最高温度到最低温度经过了多长时间?(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?B点呢?(6)你能预测次日凌晨1时的温度吗?说说你的理由.2、议一议:骆驼被称为“沙漠之舟”,你知道关于骆驼的一些趣事吗?例:它的体温随时间的变化而发生较大的变化:白天,随沙漠温度的骤升,骆驼的体温也升高,当体温达到40℃时,骆驼开始出汗,体温也开始下降.夜间,沙漠的温度急剧降低,骆驼的体温也继续降低,大约在凌晨4时,骆驼的体温达到最低点.3、如下图,是骆驼的体温随时间变化而变化的的关系图,据图回答下列问题:

一.情境引入:师:我们生活在一个变化的世界中,很多东西都在悄悄地发生变化你能从生活中举出一些发生变化的例子吗?生1:从春季到夏季气温在逐渐增加.生2:小树每年都在长高长粗.生3:我杯子里的水喝一口少一口.(说着就拿起杯子喝水,引起同学哈哈大笑)师: 你这个变化中有几个量在变化?生3:两个,一个是喝的口数,一个是水的多少?师: 它们的变化有什么联系吗?生3:有,随着喝的口数的增加,瓶中的水越来越少.生4:那我的这张纸越撕越小(此时该同学顺便从自己本子上撕下一张纸并将这张纸一次一次的撕下去,其他同学们点头称是)师: 你这个变化中又有几个量?它们又是怎么变化的?生4:两个,一个是撕的次数,另一个是纸的大小.师:那么哪个量随哪个量的变化而变化的呢?

2重点难点教学重点了解我国古代建筑的外观造型、建筑结构、群体布局、装饰色彩。教学难点对我国古代建筑的欣赏感受能力,能够从外观、结构、布局、装饰、类别来欣赏祖国古代的建筑艺术。3教学过程3.1 第一学时教学活动活动1【导入】观察建筑,点出建筑(设计意图:了解建筑的基本特点)1、同学们,我们坐在什么地方?(教室)2、让我们来观察一下,它都有哪些部分组成?(墙壁、天花板、地面、门窗)3、还有什么地方有这些特点?(电影院、家… …)4、 [课件1:现代建筑]这些都叫做“建筑”。(板书)

提问:1.怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系? 2.判断下面两种量是否成正比例?为什么? (1)时间一定,行驶的路程和速度 (2)除数一定,被除数和商 3.单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例? 4.导入新课: 如果总价一定,单价和数量的变化有什么规律?这两种量存在什么关系?今天,我们就来研究这种变化规律。

问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.

1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。