探究点三:作中心对称图形如图,网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.三、板书设计1.中心对称如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形把一个图形绕着某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.教学过程中,强调学生自主探索和合作交流,结合图形,多观察,多归纳,体会识别中心对称图形的方法,理解中心对称图形的特征.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
第一,说教材。《小数点搬家》是选自九年义务教育六年制小学数学北师大版四年级下册第三单元第43、44页的内容。本课是在学生已经认识了小数,并理解小数乘法的意义和会计算简单的小数乘整数的基础上进行教学的。教材编排从设疑引趣出发,使学生发现小数点的移动会引起小数大小的变化规律,并通过新奇有趣、层层提高的练习形式让学生掌握并灵活运用知识,为以后学习小数的乘除法作好铺垫。根据大纲的要求和教材的特点,结合四年级学生的实际情况,本节课我确定如下的教学目标:知识目标:结合实际情景,发现小数点的移动引起小数大小变化的规律。能力目标:通过各种实践活动,能运用所发现规律计算相关的小数乘除法。情感目标:在玩游戏探究新知的活动中,激发学生学习数学的兴趣,培养合作意识和应用意识。
第三个环节——巩固应用按从易到难的原则,设计了4道检测题,引导学生综合运用所学的知识和技能,提高解决问题的能力,并从中体验解决问题的乐趣。第四个环节——全课小结首先学生谈收获,教师进行恰当评价。此环节通过师生互动、生生互动,经历一次再学习、再巩固的过程。教学反思:一、还应展开对字母表示数和数量关系的具体意义的交流性阐释。虽然在教学中我十分注重让学生在生活情境中轻松地抽象数学模型和理解新知,但是由于过分关注教学进度,学生没有时间结合具体情境全面地表述含有字母的式子所表示的意义。二、对学生的建模能力培养还应加强训练。每一次让学生表述字母和含有字母的式子表示什么意思时,学生还没有来得及充分思考,我总是忍不住着急地引导。其实,如果放手让学生交流、讨论,让他们自己进行抽象概括,他们还是能解决的。
教学难点:让学生经历比较简单分数大小的过程,并能解决简单的实际问题.设计本课时,我注重为学生创设恰当的参与,实践探究必备的空间,让学生在主动参与学习活动的过程中,引导学生有效思考,撑握简单分数大小比较的方法,活动重在让学生经历探索与发现的过程,使其在课堂中既有获取知识,能力也得到了培养。本科课堂教学我从学生感兴趣的游戏和故事两方面入手:游戏对于孩子一直是感兴趣的话题,同分母分数比较大小在了解分数的意义之后,对于学生学习这一部分来说是比较简单的,如何提高学生的学习兴趣,我脱离书本这一载体设计了莫分数比大小这一游戏,在课堂上学生自主地参与活动,通过让学生动手做、动脑想:你想摸到几颗棋子?为什么?、动口说:比这个分数大的分数还有?比这个分数小的分数还有?,使学生在活动中发现问题分母相同的分数如何比较大小?寻求规律分母相同的分数比较大小的方法。
教学目标(一)教学知识点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.(二)能力训练要求发展学生的数学应用意识和解决问题的能力.(三)情感与价值观要求1.在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气. 2.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.教具重点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索——发现法教具准备多媒体演示
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
【类型四】 含整数指数幂、零指数幂与绝对值的混合运算计算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分别根据有理数的乘方、零指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法总结:熟练掌握有理数的乘方、零指数幂、负整数指数幂及绝对值的性质是解答此题的关键.三、板书设计1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.2.零次幂:任何一个不等于零的数的零次幂都等于1.即a0=1(a≠0).3.负整数次幂:任何一个不等于零的数的-p(p是正整数)次幂,等于这个数p次幂的倒数.即a-p=1ap(a≠0,p是正整数).从计算具体问题中的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.教学时要多举几个例子,让学生从中总结出规律,体验自主探究的乐趣和数学学习的魅力,为以后的学习奠定基础
问题:2015年9月24日,美国国家航空航天局(下简称:NASA)对外宣称将有重大发现宣布,可能发现除地球外适合人类居住的星球,一时间引起了人们的广泛关注.早在2014年,NASA就发现一颗行星,这颗行星是第一颗在太阳系外恒星旁发现的适居带内、半径与地球相若的系外行星,这颗行星环绕红矮星开普勒186,距离地球492光年.1光年是光经过一年所行的距离,光的速度大约是3×105km/s.问:这颗行星距离地球多远(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.问题:“10×105×107×102”等于多少呢?二、合作探究探究点:同底数幂的乘法【类型一】 底数为单项式的同底数幂的乘法计算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根据同底数幂的乘法法则进行计算即可;(2)先算乘方,再根据同底数幂的乘法法则进行计算即可;(3)根据同底数幂的乘法法则进行计算即可.
1.学生思考:从故事中能不能找到自己?2.学生发挥的想象,思考绘本故事中不同情境中皮皮的相同经历,进行故事创编。反馈指导:1.说一说从故事中你找到的自己。2.(出示ppt)交流同学们创编的故事。3.思考讨论:为什么皮皮到哪儿都不受欢迎呢?小结:交流分享后,老师设疑:皮皮难受极了,他该怎么办呢?活动四:找原因,见行动导语:这只不爱干净、仪表不整洁的小猪皮皮给我们打来了求助热线,让我们一起来帮帮不受欢迎的皮皮吧。出示任务:出示ppt,师生共读、交流绘本《皮皮的故事》第6、7、8幅图的内容。课后每个小朋友都做一次家庭小调查,发现自己在洗漱习惯方面哪些做得好,还存在哪些问题呢?反馈指导:1.讨论:你从故事中懂得了什么?2.(出示ppt)说说你准备怎样做一个整洁干净的好孩子?课后完成《家庭小调查表》。
思考:你有什么好办法避免这些麻烦呢? 设计意图:本环节利用微视频,让学生分析身边小伙伴的烦恼,让学生产生情感代入,从而产生不能乱丢物品的情感。(三)、说一说,金点子大比拼。同学们,我们身边的小马虎可真不 少,你有什么好的意见或建议想对她们说一说吗?(四)、写一写,贴一贴。请在智慧果上写好你的建议,并把它贴在 智慧树上,告诉身边的小马虎们吧。设计意图:写一写,是学生主动参与生活、创造生活的过程,架起了 课堂通向生活的桥梁,引起情感的共鸣。(五)、演一演。同学们给智慧树上挂满了智慧果,一个个智慧小锦囊提醒着我们如何爱惜自己的小伙伴,老师非常开心,想和大家一起分享一首儿歌,《我们的小伙伴》设计意图:利用学生喜爱的chant形式,说唱结合,趣味性浓,针对 性强,学生入脑入心,留下深刻的印象,有效的引导学生在生活中爱护物 品、学会整理。
预设3:做完作业没检查。师:你做什么作业没检查结果怎么了师:原来做完事情不检查会让我们马虎预设4:做事太粗心大意了。师:你做哪件事粗心大意了结果怎么样师:原来做事粗心大意也会让我们马虎预设5:做事不认真。师:你做了件什么事不认真结果怎么样师:原来做事不认真会让我们马虎。2.“智慧仙子”有秘方师:本侦探可不是小马虎,所谓为了搞清楚马虎的原因,特意去请教了智慧仙子。看看她认为马虎的原因有哪些。(图片出示智慧仙子,并点击马虎的原因)师:小朋友们,我们知道的马虎给我们带来那么多的麻烦,也了解了马虎的原因,我们要不要做小马虎啊生:不要做师:对啦,我们不做小马虎,并板贴“不做”。小朋友们,这纸上有很多你做过的马虎事,让我们用力把他揉成一团,把小马虎扔进垃圾箱,从此告别这些马虎事,好不好
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
(1)喜欢哪种动物的人最多?(2)一共有多少人投票?(3)下面哪一组和上图所表示的数据完全一样?2、发货的工厂给我们推荐了几款比较受欢迎的鞋子,这里有一些调查的数据,你准备采用什么方法来决定这几种款式要进的数量?做一做!(先独立完成再与同伴交流自己的方法)(设计理念:通过本节课创设的情景,很自然地引出一个习题和课下作业,并不是很生硬地为了练习而练习,而是让学生感受到现实存在的问题需要利用所学的知识去解决,这样不仅能巩固所学知识,还能让学生再次体会统计的必要性。)说板书设计:板书设计在教学中起到了画龙点睛的作用,因此,我设计概括点拨式的板书来归纳本节课的中心内容,这样设计层次分明、重点突出,有利于巩固学生对新知识的掌握。
(四)巩固新知,拓展应用。1、让练习变得生动有趣。一节数学课,练习的设计也是不容忽视的重要环节,针对低年级学生的特点,我设计的习题具有一定的趣味性并与生活息息相关。把竖式修改变成了森林医生,看谁能帮助森林医生找到大树的病因,医好大树的病。以此来激发学生的学习兴趣,提高学生的计算能力2、(爱心小行动),学生给小动物找家,引导学生独立思考发现只要小动物身上的数字卡片和房子的算式得数相同,小动物就可以回家了。但是有一个多余信息只有一只小兔没有家,怎么办呢?我因势利导,学生纷纷帮它设计很多家。充分发挥了孩子的创造力、想象力,只要算式的结果是14,教师就给予肯定。这一开放有趣的练习不仅使计算方法得到灵活运用,同时培养学生助人为乐的好品质。3、接下来,我们来玩一个乘车游戏,游戏规则可要听清楚啦:待会儿,大屏幕上开出几号车,你手中算式卡片的得数正好等于这辆车的车号,你就赶快上台来乘车。