
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.

解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.

在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.

(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.

(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.

解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.

我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.

解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.

一要全面贯彻落实各级防控要求。为进一步提高疫情防控措施的科学性、精准性、针对性,近期,国家对疫情防控工作进行了调整。一是修订了《新型冠状病毒肺炎防控方案(第九版)》。主要是对隔离管控措施、风险地区划分、核酸检测频次等方面措施进行了重新规定。其中,人员隔离方面上有了较大变化:密接、入境人员隔离时间由“14+7”调整为“7+3”;次密接由“7天集中隔离”调整为“7天居家隔离”;风险区域防控标准统一使用中高风险区概念,近7天到过高风险区的,实行7天集中隔离,近7天到过中风险区的,实行7天居家医学观察,近7天内到过低风险区的,实行3天2次核酸检测。二是提出了“九不准”要求。不准随意将限制出行的范围由中、高风险地区扩大到其他地区,不准对来自低风险地区人员采取强制劝返、隔离等限制措施,不准随意延长中、高风险地区及封控区、管控区的管控时间,不准随意扩大采取隔离、管控措施的风险人员范围,不准随意延长风险人员的隔离和健康监测时间,不准随意以疫情防控为由拒绝为急危重症和需要规律性诊疗等患者提供医疗服务,不准对符合条件离校返乡的高校学生采取隔离等措施,不准随意设置防疫检查点,限制符合条件的客、货车司乘人员通行,不准随意关闭低风险地区保障正常生产生活的场所。近日,国家和省、市相继召开疫情防控电视电话会议,对落实《新型冠状病毒肺炎防控方案(第九版)》和“九不准”要求进行了安排部署。

要坚持点上用力,大力倡树“细部工作、点上用力、实处见效”的作风。要做到心中有数,要定好时间表、路线图,细化每月、每周、每天的计划,一件一件地抓实,一件一件地抓成。持续探索城市精细化管理工作,深入推进各类垃圾综合治理,加大水环境治理力度,做好供水和防污治理,全面提升市政市容管理,完善城市网格化管理,推进城市综合管理标准体系建设,打造一批高水平高素质的城管队伍。终为民,走好群众路线。人民群众是历史的创造者,是国家最坚实的根基,是D执政最大的底气。要多为群众办实事,始终把群众呼声作为第一信号、把群众需要作为第一选择、把群众满意作为第一标准,紧盯群众最惦念、最揪心的问题,下大气力去认真解决,真心实意为群众办实事、解难事、做好事。

(二)紧盯人员密集场所,坚决遏制火灾易发态势。深刻汲取北京丰台长峰医院、浙江金华企业厂房火灾事故教训,坚持“哪类场所火灾多发就整治哪类场所、什么问题突出就整治什么问题”。继续做好火灾防控工作,以防范火灾、爆炸和防止踩踏为重点,紧盯水利办公区域、职工食堂、施工区域、集体宿舍、水利工程管理用房等场所,集中排查整治违规电气焊、违规动火、违规使用易燃可燃材料装修装饰、违章动火作业、锁闭安全出口、占用堵塞消防通道、消防设施损坏缺失等方面存在的重大隐患。(三)做好安全度汛工作,全面整治各类安全隐患。加强地质灾害防治,受到山体滑坡、垮塌和泥石流威胁的施工工地、生产厂房和居民区,重点加强监测监控,采取针对性防范措施。强化建设施工项目安全检查,遇雷雨、大风等极端天气时,按规定立即停止室外高空作业,落实塔吊等大型起重机械抗风防滑措施。切实做好汛期安全隐患排查治理工作,确保汛期安全生产形势稳定。

一、旧知回顾1、有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。(2)绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。(3)互为相反数的两数相加得零。(4)一个数与零相加,仍得这个数。注意:一个有理数由符号和绝对值两部分组成,进行加法运算时,应注意确定和的符号和绝对值.

过程与方法:通过阅读保护听力的资料,了解我们的听力经常受到哪些伤害,知道保护听力的做法。情感、态度、价值观:认识到保护听力的重要性,养成良好的用耳习惯和在公共场所保持肃静的习惯。教学重点认识到保护听力的重要性教学难点知道各种控制噪音的方法教学准备发音罐、报纸、毛巾、棉花等

《场景歌》是统编版二年级上册第二单元的一篇识字课文。这是一组数量词归类识字。把数量词分类集中在四幅不同的图画之中,让学生在感受美丽景色、感受美好生活的同时,认识事物,认识表示事物的汉字,初步感知不同事物数量词的表达方式。全文共五节。第一节是一幅大海风景图。第二节是一幅山村田园风光图。第三节是一幅公园景色图。第四幅是少先队员活动的场面。教师要充分调动学生的积极性,采用各种各样的方法,让学生自己认字,朗读。在教学的过程中,通过结合图片和上下文,欣赏美丽景色,感受美好生活,同时认识事物,初步感知不同事物数量词的表达方式。 1.认识“帆、艘”等10个生字,会写“处、园”等10个生字。2.正确朗读课文。初步感受场景展示的美丽景色,了解不同事物数量词的不同的表达。3.选择照片或图画,仿照课文,学习用数量词表达生活中的事物。4.培养学生留心观察周围事物的习惯,培养学生的观察能力和想象能力。 1.教学重点:会认、会写课文相关生字。正确朗读课文。背诵课文。初步感受场景展示的美丽景色,了解不同事物量词的不同表达。2.教学难点:培养学生留心观察周围事物的习惯,培养学生的观察能力和想象能力。学习用数量词表达生活中的事物。 2课时

1、了解和认识彩车巡游是节庆游艺形式之一。学习并掌握主题型、活动型彩车模型的设计制作方法。 2、在欣赏评述中,感受节庆中的彩车艺术,在探究实践中拓展设计思维,在参与“彩车巡游”的活动中感受成功的快乐。 3、体验彩车制作的科学原理,乐意和同学分工合作,体验节庆彩车巡游和学习成功的乐趣。 围绕个主题,综合利用各种环保材料设计制作美观的活动彩车模型。 彩车整体造型的构思与应用的活动原理。 教师播放视频,再讲述导语,使学生快速进入课堂学习氛围,引起他们的兴趣。(出示ppt) 师:我们先一起来看一段视频吧!从视频中我们可以看到不同的彩车有不同的装饰和特点。 师:在盛大的庆典或节日的游行队伍里,常可以看到色彩缤纷、造型独特的大型彩车,为节日增添了欢乐的气氛,同时很好地体现了一定的主题和思想内容。

第一,知行合一,切实提高绿色低碳转型的思想自觉和行动自觉。要有全面、系统、深刻认识“30·60”内涵的思想自觉。与发达国家相比,我国仍处于快速工业化、城镇化进程,经济将在较长一段时期保持中高速增长,人均能源需求尚有较大上升空间,未来碳减排压力较大。据国际组织、科研机构测算,我国碳排放峰值将超过XXX亿吨,而XX碳排放峰值为XX亿吨,XX约为XX亿吨。我国从碳达峰到碳中和仅有XX年时间,远低于欧XX家XX-XX年的时间。“碳达峰、碳中和”不是要简单以牺牲经济增长速度、国民财富积累和人民生活水平提高为代价,而是要实现碳减排约束下全面、协调、可持续的高质量发展,需要充分、理性、智慧地平衡好生态文明建设与经济社会发展的关系。未来几十年,绿色低碳转型将嵌入所有经济活动的内核,成为投资、生产、消费和流通等决策的核心逻辑

敬爱的老师们,亲爱的同学们,大家上午好!我是来自高二、七班的龚xx。今天我演讲的主题是“中国传统文化的艺术珍品”。不知大家闲暇时有什么爱好?我最爱画得桃红柳绿的花旦玉兰指一压唱一曲《牡丹亭》。牡丹亭属于昆曲。昆曲,又称昆剧、昆腔、昆山腔,是中国最古老的剧种之一,也是中华传统文化艺术中的珍品。十四世纪中叶,元代末期,昆曲发轫于吴语系的昆山。十五年前的5月18日,这对大多数昆曲爱好者而言是一个特殊的日子。昆曲在XX年5月18日被联合国教科文组织列为“人类口述非物质文化遗产代表作”。从昆曲开始,中国传统文化逐渐走向世界的舞台,此后共有31项文化遗产申遗成功。与昆曲属于同一文化体系的,有柳暗花明,曲径通幽的苏州园林艺术,有巧夺天工,色彩明丽的苏州刺绣,他们都是江南文化的精髓。

各位老师,同学们:早上好!今天我演讲的题目是:心存一颗感恩的心。俗话说“谁言寸草心,报得三春晖”,“滴水之恩,当涌泉相报”。是的,知恩图报是中华民族的传统美德。同学们,我们要懂得感恩。如果你不会感恩,幸福就离你远远的;如果你会感恩,幸福就会常伴你左右。那么,我们应该感谢谁呢?首先,我们要感激父母,感谢他们给了我们生命,感谢他们搀扶我们走好每一步人生之路,为我们搭建快乐成长的舞台。接着,我们又该感谢谁呢?我们要感激老师,感激他们传授我们知识,让我们拥有智慧、拥有克服困难的力量和奋发图强的信心。当然,我们也要感激陪伴我们成长的朋友们。

各位老师、同学们你们好:今天我国旗下讲话的题目是《安全牢记心中,5.12防灾减灾日》。祖国的未来属于我们,我们未来的生活将是多么美好。但是,生活中还有许多需要我们注意的事情,我们需要增强自我保护的能力。据统计,去年,我国有1.6万多名中小学生因食物中毒、溺水、交通事故等导致非正常死亡。人类社会还面临着各种各样自然灾害的威胁。据统计,台风、洪灾、地震、泥石流等各种自然灾害每年给人类生命财产造成重大损失。大量事实表明,防灾减灾的意识不强,自救互救知识缺乏是灾害造成人员伤亡的主要原因。对生命的尊重和珍视是人类社会永远不变的追求。我们要对每一个生命负责,通过各种办法,增强公众的公共安全意识、社会责任意识和避灾自救意识,使公众能够掌握避灾自救基本常识、专业知识和技能技巧,提高公众应对突发公共事件的综合素质和避灾自救能力,把灾害造成的人员伤亡减少到最低程度。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。