本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.
新知讲授(一)——随机试验 我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示。我们通常研究以下特点的随机试验:(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但事先不确定出现哪个结果。新知讲授(二)——样本空间思考一:体育彩票摇奖时,将10个质地和大小完全相同、分别标号0,1,2,...,9的球放入摇奖器中,经过充分搅拌后摇出一个球,观察这个球的号码。这个随机试验共有多少个可能结果?如何表示这些结果?根据球的号码,共有10种可能结果。如果用m表示“摇出的球的号码为m”这一结果,那么所有可能结果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间。
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
作为备课组长,必须认识到教师的劳动,既是个体的创造性努力,需要发挥个人的才智,又要依靠集体的合作,需要群策群力。开学初始,我会早早制定切实可行的备课组活动计划,教学进度计划,从内容的确定、人员的安排、活动形式的组织等方面都进行了详细的安排。所有工作的安排尽量做到公平公正,如果某位老师做某项工作有困难,我会及时调整计划安排。在计划实施过程中,我会采取随机听课,检查教师批改作业情况等方式,严格监督组内成员是否按照计划执行。
在萃文中学实习已经两个多月了,从第一周的听课到现在上课的收放自如,说没有付出努力是不可能的。但现在一步步走来,看到这群初一的孩子们越来越听话,上课时越来越认真,作业交的越来越及时,心里就像有朵花悄然开放,感觉每节课都是美滋滋的。但是总有这么一个孩子觉得中考不考生物,在我的课上一开始调皮捣蛋的,后来我跟他谈过几次心,他说对于我是没有意见的,知识单纯的不喜欢生物这个学科,于是我跟他定下协议,认认真真的听我几节课,我会让他知道就算中考不考,学些生物知识在生活中引物很有用。以这个学生为起点,我设计了“我们都是大医生”这节课,让学生们感受到生活中处处是科学。
学生们开始时会一时无法适应正规的双语学习,我们就让他们更自由一些:可以用轻松愉快的教学方式赢得学生们的喜爱,改变传统的教学模式,让课堂更加有趣味性,适合学生们的特点。对于刚接触汉语的学生来说,需要老师提出一定的要求,应该知道作为学生所要达到的标准,每一堂课,我都会使用新学的教学理念运用于课堂,给每一位学生讲清楚该怎样做才是最好的;只要每一天学生都在努力、在进步,我们就应该很欣慰!对于一直生活在母语环境下的学生来说,一下子去适应双语环境,在我们看来的确很困难。然而,要知道学生们的语言接受能力极强,他们很快会接受双语环境。
在实习的日子里,我们主要负责二年级、五年级和六年级的体育课教学。在实习最开始的时候我们看指导老师上课,以一个“老师”的身份看他是如何上课的,学习他如何传授知识、驾驭课堂,如何控制授课时间等等。通过听课我发现教师不仅对知识和技能的把握很重要,对学生的课堂纪律、积极性的调动都很重要。只有把握好课堂纪律、学生学习的积极性,才能让我们的学生在上课的时候真正的学到运动技能,并真正达到锻炼身体的目的。
现在很多软件为了自身盈利的需要而夹杂了流氓软件,流氓软件安装之后又是极不容易卸载的。这些流氓软件可能会修改你的浏览器主页,定期打开某一网页等等,造成了我们使用电脑时的极大不便,这些软件还会记录下我们上网偏好,随时向我们发垃圾广告。所以下载安装软件一定要慎重。第三慎用U盘、移动硬盘之类的存储设备。某些破坏性的病毒可能导致移动存储设备损坏。我们在使用U盘之类的存储设备时也要小心谨慎,打开U盘时尽量不要双击打开,这样很可能会激活存在于里面的木马,使用打开前最好能够先杀一遍毒,甚至我们可以专门去网上搜取U盘木马专杀来预防电脑再次被感染。第四尽量不要在互联网上公布个人信息。除非是万不得已,否则不要公布自己任何详细的信息,以防被不良分子利用。另外在网上不要随意公布自己的邮箱,因为邮箱是一个十分便利的切入口来搜取你的个人信息,我们在各个网站注册时一般都会被要求留下邮箱,这样在这个过程中或多或少我们都会偷漏一些个人信息,如果通过搜取邮箱的方法获得你在各个网站上公布的个人信息经过综合整理很可能是自己更多的信息被公布出来。更多的我们考虑的自身安全问题,公布照片不仅使我们信息安全得不到保护,甚至现实中我们人身安全也可能因为一张照片而受到威胁。
第一天,人员分为三组进行游戏比拼,每一个游戏都需要脑力、体力以及团队合作,尤其是最后一项游戏—要求团队七名成员在八分钟时间内完成五项游戏项目。当时的情形依旧历历在目,犹记得在练习时,我们队在让排球在鼓面上掂六次这一项一直未能成功。在正式比赛时,我们吸取前一队的经验但是依旧未能成功,后来找到了适合自己队的一种方法终于克服了这一项目,在八分钟内完成了所有项目。 第二天,全体人员徒步穿越大峡谷。非常触动我的是,前半路程并不好走,需要踩着石头通过一片又一片的有水区域。穿凉鞋的同事便义无反顾地下到水中,帮忙搀扶着其他人员通过。此外,在危险难过的路段总会有同事伸出援手。同时,虽然天气炎热,但是无一人中途退出。
1、认真研究教材。吃透教材是教师进行有效课堂教学的立足点。除了教学的重点,难点的把握,教师还应该考虑到教材的重组与延伸。 2、仔细推敲教学方法。随着网络的的普及,教师可以利用的资源是越来越多了,教师交流教学方法的渠道也是越来越广,我们可以发现相同的教学内容往往有多种不同的教学方法,如何选择适合自己班级学生的教学方式在教学中有着举足轻重的地位。 3、有针对性的设计课堂练习。学生吸收知识第一印象往往十分重要,而教师在课堂上设计的听说读写各式练习情况往往往直接影响着学生课后练习的正确率。
“创意无限,匠心支撑”。当下,创新创业大潮涌动,“互联网+”颇受青睐,大批创客投身其中。这里头有脚踏实地的深耕者,但也有不少一天到晚想着如何造噱头、拉投资,幻想借互联网的东风,“抄一把就走”之人。与此相应,很多产品往往火了一把便再无踪迹。如此“创”法,除了搅出些过时即破的泡沫,难言价值。创新创业不应成为浮躁的代名词,那些真正成功的互联网神话缔造者,远非鼓吹概念、贩卖情怀这么简单。很多大佬正是以其对细节近乎严苛的追求向大家证明,只有“互联网+工匠精神”,才能出优质产品。
们学校是一个各民族学生与老师和谐相处的大家园。学校有维吾尔族,哈萨克族,柯尔克孜族,回族,蒙古族等多个民族的同学。学校在学习生活方面也给予少数民族同学很多的关心,而我们也就应用一种团结、友爱的态度来对待学校里的每一位少数民族同学。只有关系的和谐才能创造出一个充满生机和活力的新校园。 无论从哪一方面说,和谐都是发展的前提。09年的“7?5”事件使生活在xx的我们更加体会到稳定的重要性。如果没有了团结我们很有可能成为那个近代任人宰割的中国,实现中国的伟大复兴就会成为空谈,变成一个遥遥无期的梦想。应对国内外严峻的形势,我们更应做到团结,用一种全新的姿态应对世界!居安思危能使我们防患于未然,能让我们见证一个蒸蒸日上的新家园!
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。