4.操作。(“做一做”第2题) 全班同学动手操作,1名同学到投影仪上操作。 (1)第1行摆5个△,在△下面摆○,△要比○多1个。第2行摆几个○? (2)第1行摆4朵红花,摆的黄花比红花少1朵,第2行摆几朵黄花? 二、运用新知 教科书练习一第1~4题。 1.第1题:左图是猴子多,右图是骨头多。(避免学生产生思维定势) 2.第2题:学生观察,看到公鸡和鸭子虽然摆的一样长,但疏密不同,进而判断摆的密的鸭子的只数多些,而公鸡只数少些。 3.第3题:学生在观察到第一排蛋糕同样多的基础上,只需比较两盒中的第二排。第二排多的就多些,反之,就少些。 4.第4题:此题是在同一排中比较多少,当第5次循环出现珠子时,只出现了一个黄色珠子,所以黄珠子多而红珠子少。 三、总结 教师:今天我们学习了“比一比”,知道在比较时,一定要一个对着一个比,就会得到正确的结果。
一、教材分析《3的倍数的特征》是人教版实验教材小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。教材的安排是先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑,确定教学目标如下:1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。
不足之处是: 1 、在如何有效地组织学生开展探索规律时,我认为猜想可以锻炼孩子们的创新思维,但猜想必须具有一定的基础,需要因势利导。在开展探索规律时,我先组织让学生猜想秘诀是什么?由于学生缺乏猜想的依据,因此,他们的思维不够活跃,甚至有的学生在 “乱猜 ”。这说明学生缺乏猜想的方向和思维的空间,也是教师在组织教学时需要考虑的问题。 2 、总怕学生在这节课里不能很好的接受知识,所以在个别应放手的地方却还在牵着学生走。总结性的语言也显得有些罗嗦。 3 、课堂上学生参与学习的程度差异很明显的:一部分学生争先恐后地应答,表现得很出众,很活跃;但更多的学生或缺乏勇气,或不善言辞,或没有机会,而沦为听众或观众。 4 、本节课在教学评价方式上略显单一。对学生的评价少,激励性的语言不够。
1、教学内容义务教育课程标准实验教材(北师大版)二年级上册58页到59页。2、教材地位和作用本教材是学生在一年级学习用“前、后、左、右、上、下”来描述物体相对位置的基础上,继续学习使用东南西北四个方向来描述事物的位置。东南西北四个方向与以前所学过的前后左右上下位置关系有一些区别,也在某些情况下可以通用。本节课并非单纯进行知识点的讲授,而是要关注学生的学习过程,要让学生通过亲自实践来体会和掌握知识,体验数学与现实生活的密切关系,增强学数学、用数学的意识。3、教学目标知识目标:1、在熟悉的生活环境中辩认方向,建立东、南、西、北的方位观念,感知方向的相对性。2、认识在地图上东、南、西、北的方向,并应用四个方位词来描述物体的位置关系。能力目标:1、在指明东、南、西、北四个方向中的一个方向的条件下,会辨认其余的三个方向。2、培养学生的方向感,运用所学的知识来解决生活问题。
(四)巩固新知,拓展应用。1、让练习变得生动有趣。一节数学课,练习的设计也是不容忽视的重要环节,针对低年级学生的特点,我设计的习题具有一定的趣味性并与生活息息相关。把竖式修改变成了森林医生,看谁能帮助森林医生找到大树的病因,医好大树的病。以此来激发学生的学习兴趣,提高学生的计算能力2、(爱心小行动),学生给小动物找家,引导学生独立思考发现只要小动物身上的数字卡片和房子的算式得数相同,小动物就可以回家了。但是有一个多余信息只有一只小兔没有家,怎么办呢?我因势利导,学生纷纷帮它设计很多家。充分发挥了孩子的创造力、想象力,只要算式的结果是14,教师就给予肯定。这一开放有趣的练习不仅使计算方法得到灵活运用,同时培养学生助人为乐的好品质。3、接下来,我们来玩一个乘车游戏,游戏规则可要听清楚啦:待会儿,大屏幕上开出几号车,你手中算式卡片的得数正好等于这辆车的车号,你就赶快上台来乘车。
(三)联系实际,巩固应用这一环节设计了帮助蓝猫“买家电”这一情境,将学到的知识同实际问题相结合,使学生感到数学源于生活并服务于生活。特别是问题(4):“如果它用900元钱买一台录音机和一台洗衣机它的钱够吗?如果不够,还差多少元钱?”这个问题的设计发散了学生的思维,学生可以用先加再减的方法,也可以用连减的方法,给学生的计算提供较大的空间,而且学生如果先把两种电器的价钱相加就能凑成整百整十数,很快能计算出结果,这样不仅巩固了本节所学知识,同时还应用了前几节课的口算知识。1.师:利用今天学习的知识可以解决很多生活中的问题,今天蓝猫就想请大家帮个忙,它想买几件家用电器,我们陪它到家电城看看好吗?(课件出示商品及标价。)
二、说学生通过前面的学习,学生已经认识了长度单位:米、分米、厘米、毫米,以及它们之间的进率,多数学生能联系生活实际,合理运用长度单位。但“千米”这个长度单位比较抽象,学生学习起来有些困难。为了激发学生的学习兴趣,可以把学生带到学校的操场上进行教学,让学生实地拉一拉、走一走、想一想等活动,充分感知“千米”这一长度单位到底有多长;对于学困生,以和他们玩游戏的方式来引导他们感知1千米的具体长度,从多角度来激发他们的参与,给予他们激励性的评价语言,并让他们积极汇报自己的亲身体会,达到全员参与,共同提高的原则。三、说教学目标新课程标准在空间与图形中明确提出:在教学中,应注重所学知识与日常生活的密切联系:应注重使学生在观察、操作等活动中,获得直观经验。结合我对教材的理解和本班学生的实际情况,我拟订了以下教学目标:
第二步,我在教具上拨几个分针指的数字大点的时刻看同学们是否认识,并且能否说上为什么,接着我告诉大家先看时针,时针刚走过几或正指向几就是几时。再看分针,分针走了几大格我们就用几乘以5,然后再加上刚过这个大格又走的小格数。第三步,我拨几个时刻让同学们告诉我是几时几分。第五环节:认识表示法。在刚才第四环节时我就在在黑板上写出几个数字表示法的时间和几个汉字表示法的时间,通过对比让同学们记住两种表示法。第六环节:加强练习。通过课件出示钟面让学生认识时刻、同桌一个拨时刻一个说钟面上表示的时刻、请一位学生说出一个时刻让大家在自己的学具上拨出时刻这些活动让学生将认识时刻这一能力得到巩固。第七环节:课外拓展。1、我拨时针和分针让同学们说出此时的时针和分针形成了什么角,将上一单元知识得到巩固。2、如果时间允许,我拨时针和分针问学生在这个时刻再经过10分钟或再经过15分钟是几时几分。
教学过程一、谈话激趣,引入课题师:同学们,你们喜欢小动物吗?动物是人类的朋友,我们都要爱护它们。人们还把可爱的动物做成各种形状的卡通画呢,用它们作为吉祥物参加各种盛会。请把你最喜欢的动物的名字写在卡片纸上,只写一种动物,不会写的也可以画出成图形或卡通形象。谁来说一说。同学们的盛会是六一节,学校准备把同学们最喜欢的动物作为吉祥物布置到校园。该把哪种动物作为吉祥物呢?怎样才知道哪种动物是同学们最喜爱的动物呢?师:对没有调查就没有发言权,调查一下哪种动物最受我们喜欢就行了。用什么方法才能知道喜欢某种动物的人最多呢?请小组讨论下该怎样调查呢?把详细的过程说出来。二、小组合作,探究新知1、说一说,你们组准备怎样开展调查生1:我们让喜欢某种小动物的同学举手。查一查人数就行了。
教材分析:教材借助购买物品的生活情境提出问题,展开探索并学习三位数加减法的验算方法。本节课的学习中,要给学生足够的时间和空间,引导学生充分利用迁移规律探索和学习新知识,同时培养学生认真检查仔细验算的良好学习习惯。学情分析:学生已经学过了二位数加减二位数的验算方法,而三位数加减三位数的验算是二位数加减二位数的验算知识的拓展,它们的算理完全相同,为此难度不大,但要给学生足够的时间和空间去探索学习。教学目标:知识目标:1.结合现实情境,探索掌握三位数加减法的验算方法。过程与方法:在探索验算的过程中,初步形成归纳、整理知识的能力,养成认真检查仔细验算的良好学习习惯。情感态度与价值观:通过自主探索、合作门交流,感受学习数学的乐趣,增强学习数学的自信心和成功感。
(2)研究正方形:通过前面这个环节,学生已经掌握了研究长方形特征的方法,很自然地拿出一个正方形,通过看、数、量、折、小组讨论、展示交流等活动归纳出正方形的特征:正方形四条边都相等,四个角都是直角,这也是本节课的重点内容,但并不是难点,可由中下学生来完成,给他们以展示技能的机会。通过一系列的探究活动,学生的学习积极性已被调动,思维正处于活跃阶段,此时我把学生带到本节课的难点环节(3)想一想,长方形和正方形有什么相同点和不同点?对于学生的思考结果,老师并不急于回答,而是引导学生从长方形和正方形边和角的共同点去进行研究分析,让学生充分经历思考学习的过程,最后才巧妙地借助多媒体,直观地帮学生理解正方形是一个特殊的长方形,在这里多媒体化静为动,化抽象为直观,较好地帮学生突破了难点。至此,学生已经掌握了长方形、正方形的有关知识,此时,他们急于找到一块用武之地,以展示自我,体验成功,于是我把学生带入到“应用新知,理解提高”的环节。
二、说教学目标知识和技能:能结合生活情景辨认锐角和钝角,能口述锐角和钝角的特征。 过程和方法:通过观察、操作、分类、比较等数学教学活动,培养学生的动手能力,合作意识,激发学生的创新思维。在对简单物体和图形的形状的探索过程中,发展空间观念。情感、态度、价值观:通过实践,使学生获得成功的体验,建立自信心。通过生活情境的创设,感受生活中处处有数学,培养学习数学的兴趣。教学重点:能辨认锐角、钝角。知道锐角、钝角的特征。教学难点:能辨认锐角、钝角。三、说教法、学法这一节课的教学对象是二年级的学生。他们年龄小、好动、爱玩、好奇心强,在四十分钟的教学中容易疲劳,注意力容易分散。根据这一特点,为了抓住他们的兴趣,激发他们的好奇心,我采用了愉快式教学方法为主,创设情境,设计了生动有趣的简笔画,让学生在图所创设的情境中学习。同时我还采用了动像发现教学法,让孩子们通过合作交流去发现角和展示角,这样既活跃了学生的思想,激发了认知兴趣,而且充分发挥学生的学习积极性。
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
大家好,我今天的说课内容是《6和7 的认识》,下面,我将从教学背景、教学目标、教法学法、教学用具、教学过程、教学特色等六个方面来谈。一、教学背景(一)教材分析本节课是新人教版一年级上册第五单元“6~10的认识和加减法”的“6和7”部分的第一课时“6和7的认识”,即教材第39到40页的内容。从教材内容来看,这两页可以分为五个部分:情境导入、6和7的表示、5、6、7的大小关系、7与第7的区别(也可以说是基数与序数的区别)、6和7的书写。与本节课相关的内容还有第43页练习九中的1~3小题。在学习本节课内容之前,我们已经学习了0~5的认识,“>”“<”“=”等符号的表示,第1到第5的认识。在学习本节课内容之后,我们还要学习8和9的认识、10的认识、11~20各数的认识。
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。