方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因为NE=AC=a,所以MN=ME+EN=l·tanα+a.
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?解析:(1)分1≤x<50和50≤x≤90两种情况进行讨论,利用利润=每件的利润×销售的件数,即可求得函数的解析式;(2)利用(1)得到的两个解析式,结合二次函数与一次函数的性质分别求得最值,然后两种情况下取最大的即可.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)当1≤x<50时,y=-2x2+180x+2000,二次函数开口向下,对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y=-120x+12000,y随x的增大而减小,当x=50时,y最大=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.方法总结:本题考查了二次函数的应用,读懂表格信息、理解利润的计算方法,即利润=每件的利润×销售的件数,是解决问题的关键.
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
活动准备:1、磁带《风中的童话》ABA段。2、多媒体课件。活动过程:一、通过游戏帮助幼儿理解音乐三段体结构。1、根据弦外音做适合的动作。(柔和→活泼→柔和)2、再次欣赏音乐,区分段落。(1)动作是怎样变化的?音乐发生了什么变化?(欣赏)(2)音乐到底发生了什么变化?(出示~~~~~、∧∧∧∧∧、~~~~~)(3)乐曲中有个小秘密,是什么?(4)整首乐曲可以分几段?为什么?(5)小结:一首乐曲分成了3段,这种形式的乐曲称为三段体。刚才我们听到的乐曲,其中第3段音乐和第1段音乐是重复的、一样的,只有第2段是不一样的,这样形式的乐曲也叫三段体,它是三段体的一种特殊形式。二、完整欣赏,再次感受音乐三段体。三、分段欣赏,利用图片,帮助幼儿理解、感受音乐。(一)第一段:1、我们一段一段来听。2、这段音乐给你的感受与哪幅画给的感受是一样的,为什么? 3、能用什么动作表现呢?
1、欣赏云的变化。2、发挥想象力。3、享受说儿歌的乐趣。4、锻炼大小肌肉的活动能力。活动准备:课件、魔术棒、纸笔、录音机、蓝卡纸、双面胶1、 提问引起幼儿的兴趣:(1)出去玩时,下面是什么?上面是什么?(2)天空中有什么?
出示朱德挑粮画面,让学生说说看到的朱德,培养学生的语言表达能力,并从说中感悟挑粮的多、沉、重,体会朱德挑粮的艰辛。
一、欣赏欣赏土耳其音乐,判断有哪些类型的乐器及思考旋律与节奏是多重复还是多变化的?欣赏《短颈乌德》请学生思考音乐的主要伴奏乐器及音乐特点。二、乐器学习观看《短颈乌德》视频,让学生了解乌德琴。三、介绍土耳其音乐合理掌握各环节的时间,重点讲解乌德琴特点及土耳其音乐的风格特点。通过视频欣赏《短颈乌德》直接激发学习兴趣。四、深化结合听音乐思考问题的方式,集中学生的欣赏注意力,引导其学习通过音乐要素来赏析作品。每部作品的欣赏环节均采用聆听音频或欣赏视频并出示问题的方式,引导学生积极思考,以更好的理解作品。
2、晚自习,教师不得讲课,应让学生自习,吃“自助餐”(以理科为主,高中文科除外)。作业做错的,应更正作业,教师给他批改,并作必要的辅导;优秀学生可看课外书籍、预习明天的功课或练习竞赛一类的拔高题;必要时,文科老师也可与个别学生接触,作短时间的辅导。 3、中午(至下午上课前),教师不得讲课,可以让学生更正上午做错的作业,优秀学生可以自由活动(可以进阅览室看书)。
二、活动目标通过雕刻“小企鹅”雪雕作品活动,使幼儿感知经过积压的雪很硬,懂得运用各种工具进行雕琢。培养幼儿合作意识。三、适用对象大班幼儿。四、活动所需资源录像带、小冰铲、小角铲(自制),笤帚、小锯等。五、活动过程探究的问题:怎样雕“小企鹅”。幼儿讨论。(1)用彩笔画企鹅。(2)用彩泥捏企鹅。(3)用雪坯雕企鹅。
2重点难点教学重点用各种方法、材料制作未来的学校模型。第一课时:设计制作学校的平面图第二课时:设计制作学校的立体模型。教学难点大胆想象,小组协作,创想出与众不同的学校创意。第一课时:学校建筑的布局。第二课时:设计与众不同的未来的建筑。3教学过程3.1 第一学时
教材内容:本课选自人民教育出版社出版的音乐教科书七年级下册,根据第六单元“银屏之声”为教学内容。教材的地位和作用:与其它类型的音乐相比,影视音乐与影视剧情密切联系,易于理解,传播途径也比其他仅通过现场演出或录音的音乐更为顺畅。把“银屏之声”纳入初一学生的音乐教材,使学生能够结合所熟悉的电视剧,做到自主分析其中音乐的作用,从中感受音乐魅力,并进一步培养和激发学生理解和热爱祖国的民族文化艺术和民族自豪感。这是十分必要的。教学目标:a、认知目标:了解什么是主题音乐,主题音乐的作用。b、能力目标:能够对《心依恋》、《滚滚长江东逝水》乐曲风格、演唱方式等做表格对比分析,从而总结出影视主题音乐的作用,并能由此引伸到音乐与姊妹艺术的关系。c、德育目标:引导学生感受音乐与视觉影像相结合所产生的美感和魅力。进一步培养和激发学生理解和热爱祖国的民族文化艺术和民族自豪感。教学重点、难点::重点:主题音乐的功能及对主题歌曲内涵的理解。难点:音乐与其它艺术之间千丝万缕的联系。
教学过程:一、导入1、师:请同学们欣赏一组音乐片段,说出它们有什么共同之处。(1)电视剧《康熙王朝》主题曲《向天再借五百年》片段。(2)电影《泰坦尼克号》主题曲《我心永恒》片段。(3)电视剧《金粉世家》主题曲《暗香》片段。(4)电影《宝莲灯》插曲《爱就一个字》片段。生:都是影视剧中的歌曲。2、揭示课题——《银屏之声》二、欣赏《当卢浮宫遇见紫禁城》电视剧片尾曲1、学生介绍这部电视连续剧。2、课件出示思考题,让学生有目的地欣赏这首歌曲。3、连续播放片尾曲,鼓励学生能轻声哼唱,体会歌曲的情绪及音乐风格。三、讨论。1、每组学生各选择一个方面,分别进行分析讨论。要求从歌曲的歌词、情绪、音色、音乐风格和特点,及与各自的影视作品之间的内在联系入手,分析歌曲。讨论时记录,以便各组交流。各组代表发言,其他组员补充。师:大多数的影视主题音乐都是展现本剧主题的重要手段之一,它能生动形象地塑造出剧中主要人物的形象和个性,同时它也能让观众在欣赏歌曲的同时联想到剧情的内容。
(一)、新课导入?导语:请同学们听一首好听的歌曲,会唱的跟着唱,不会唱的跟着哼,好吗?(课件播放歌曲《吉祥三宝》)。?任务1:你们觉得歌中的一家人幸福吗?小女孩开心吗??学生活动:学生带着问题欣赏和哼唱歌曲。?教师总结:是呀,歌中的小女孩就是家中的“开心果”,有了她,爸爸妈妈就更快乐、更幸福。那么,你们是家中的“开心果”吗?今天,老师一起带领大家来学习《做个“开心果”》。(2)、新知讲授?【这里有个“开心果”】:1、家里的“开心果”。请同学们出示自己与家人的合影,并讲述自己与家人在一起的快乐时光。?学生活动:学生展示课前整理的与家人的合影。?教师总结:看来,你们都是家中的“开心果”,给家人带去了快乐。正因为有了可爱、懂事的你们,你们的家人才更加快乐。2、家人的爱让我们感到幸福、开心,我们的爱也让家人感到幸福、开心。我们都是家里的“开心果”,那谁又是你们小组的“开心果”,总是带给大家快乐呢??学生活动:小组内交流,并选出小组的“开心果”。?学生1:我有困难的时候,总是得到杨松浩的热心帮助。?学生2:刘思宇的赞美总是很真诚,让人很开心。?学生3:张茜总是在我难过的时候安慰我,让我感觉很温暖。?3、请同学们朗读教材第11页的儿歌,并说说什么样的人才是“开心果”??学生活动:学生读儿歌,说出自己的看法。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。