解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.三、板书设计1.角平分线的性质定理角平分线上的点到这个角的两边的距离相等.2.角平分线的判定定理在一个角的内部,到角的两边距离相等的点在这个角的平分线上.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.
答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.
解:设另一个因式为2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一个因式为2x2+x-3.方法总结:因为整式的乘法和分解因式互为逆运算,所以分解因式后的两个因式的乘积一定等于原来的多项式.三、板书设计1.因式分解的概念把一个多项式转化成几个整式的积的形式,这种变形叫做因式分解.2.因式分解与整式乘法的关系因式分解是整式乘法的逆运算.本课是通过对比整式乘法的学习,引导学生探究因式分解和整式乘法的联系,通过对比学习加深对新知识的理解.教学时采用新课探究的形式,鼓励学生参与到课堂教学中,以兴趣带动学习,提高课堂学习效率.
探究点三:作中心对称图形如图,网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.三、板书设计1.中心对称如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形把一个图形绕着某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.教学过程中,强调学生自主探索和合作交流,结合图形,多观察,多归纳,体会识别中心对称图形的方法,理解中心对称图形的特征.
方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.
解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
20XX年至2023年,我系统学习了《中国共产D纪律处分条例》《中华人民共和国监察法》等D内法规制度,深入研读了《廉洁自律准则》《纪律处分条例》《新形势下D内政治生活的若干准则》《D内监督条例》等D纪D规。每天利用业余时间,看阅D报、D刊,学习有关文件、时事政治和业务知识,记录了大量学习笔记,撰写了多篇心得体会。通过学习,有效提升了履职尽责能力。工作期间我能够主动协助纪检委员对D风廉政建设工作落实的监督,引导广大D员积极参加警示教育,严格执行D员领导干部廉洁从政的有关规定。近三年,公司D总支多次召开会议,全面传达学习上级D风廉政建设决定,分析D风廉政建设形势,部署D风廉政建设工作,对公司D风廉政建设和反腐败工作进行了责任分工,统筹推动D风廉政建设各项工作落实。将D风廉政教育内容作为D员组织生活、领导班子组织生活会的内容,推动D风廉政建设有效落实。
2021年至2023年,我系统学习了《中国共产D纪律处分条例》《中华人民共和国监察法》等D内法规制度,深入研读了《廉洁自律准则》《纪律处分条例》《新形势下D内政治生活的若干准则》《D内监督条例》等D纪D规。每天利用业余时间,看阅D报、D刊,学习有关文件、时事政治和业务知识,记录了大量学习笔记,撰写了多篇心得体会。通过学习,有效提升了履职尽责能力。工作期间我能够主动协助纪检委员对D风廉政建设工作落实的监督,引导广大D员积极参加警示教育,严格执行D员领导干部廉洁从政的有关规定。近三年,公司D总支多次召开会议,全面传达学习上级D风廉政建设决定,分析D风廉政建设形势,部署D风廉政建设工作,对公司D风廉政建设和反腐败工作进行了责任分工,统筹推动D风廉政建设各项工作落实。将D风廉政教育内容作为D员组织生活、领导班子组织生活会的内容,推动D风廉政建设有效落实。
活动目标: 1、尝试在故事情景中大胆、清楚地表述自己的想法,提高观察、分析问题及解决问题的能力。 2、感受到齐心协力能更好地做好一件事。 活动重点:尝试在故事情景中大胆、清楚地表述自己的想法,提高观察、分析问题及解决问题的能力。 活动难点:感受到齐心协力能更好地做好一件事。 活动准备:1、孩子们已经有了一些和尚的衣食住行方面的知识经验。 2、丰富幼儿看图说话的经验。 3、会唱歌曲《三个和尚》。 4、《三个和尚》故事片、课件、磁带。
活动准备:十二生肖的图片一、你知道十二生肖吗1、教师出示“兔子”图,——介绍:每个人都有自己的属相,你属什么?你的爸爸妈妈是属什么的?2、你知道人的属相一共有几种动物?有哪些动物?3、出示众多图,请幼儿找找哪些是十二生肖的动物?——揭示正确答案小结:十二生肖的说法是我们中国人很早就有的,每年就以一种动物做标志,一共有十二个动物,十二生肖。几年后又是这个小动物的生肖?(十二年)4、今年、去年、后年分别是什么年?
教学目的: 1、初步让小朋友了解人和动物出生,了解胎生和卵生的基本知识。 2、培养小朋友对妈妈的热爱之情,知道要关心爱护自己的妈妈。 3、萌发小朋友爱动物的情感,让小朋友知道动物是我们人类的好朋友,要爱护保护动物。 教学准备: 各种动物的图片,关于动物出生过程的碟片,各种动物头饰、碟机、电视机、视频展台,幼儿在妈妈肚子里的图片。 教学过程: 一、开始部分: (小朋友跟着磁带一起唱《世上只有妈妈好》的歌,引出主题)。 师:小朋友刚才唱的歌真好听,小朋友都喜不喜欢自己的妈妈?(喜欢) 师:我们每个人都有妈妈,我们都是在妈妈的肚子里慢慢长大,然后妈妈把我们生出来,我们就成了一个小宝宝。我们一起来看一看我们在妈妈的肚子里是怎样长大的。(通过视频展台出示图片,请小朋友看,引发小朋友的兴趣) 二、基本部分: 师:小朋友刚才看了我们在妈妈肚子里的成长过程,知道我们是怎样出生的,有谁知道小动物是怎样出生的呢?(幼儿发言) 师:今天周老师带来了一盘好看的碟子,请小朋友看一看,看的时候,要认真记住看到了什么,看见了谁,等会讲给大家听。 (放碟子请小朋友看一看马的生出过程和鳄鱼的生出过程,通过小朋友的观察,请小朋友回答问题,引出胎生和卵生的概念) 师:刚才小朋友看了电视里面有谁出生了?(小马和鳄鱼) 师:小马是怎样出生的?(小马是直接从妈妈肚子里生出来的) 师:鳄鱼是怎样出生的?(鳄鱼是妈妈先生出鳄鱼蛋,然后孵化出小鳄鱼) 师:周老师再请小朋友看一看小马是怎样出生的,小马是直接从妈妈的肚子里出来的,看马妈妈流了好多好多的血,马妈妈的肚子真疼呀,生出来了,终于生出来了。周老师告诉你们象小马一样的直接从妈妈的肚子里生出来,吃妈妈乳汁长大的,叫胎生,我们人也是胎生的,请小朋友想一想还有哪些动物是胎生的? 师:小朋友说的真好!我们再来看一遍鳄鱼是怎样出生的?看有一个蛋,蛋破了,小鳄鱼爬出来了,原来小鳄鱼是从蛋里孵出来的,又有一只小鳄鱼出生了。周老师告诉小朋友,象鳄鱼一样,是妈妈先产卵,然后再把小动物从卵里孵化出来的,叫卵生。小朋友想一想,哪些动物是卵生的? 师:小朋友刚才说了许多卵生和胎生的动物,我再请小朋友看一看图片,说一说,哪些动物是卵生的,哪些动物是胎生的。(通过视频展台给小朋友出示更多的动物孵化和从妈妈肚子里出生的图片) 三、结束部分: 师:小朋友今天又学到了一个新本领,知道了小动物出生的秘密,认识了胎生和卵生。 师:周老师要带小朋友玩一个找家的游戏,周老师给小朋友准备了许多头饰,每人找一找,还想一想,它是胎生的,还是卵生的,周老师扮演地球公公。(带领幼儿到户外玩游戏) (念儿歌:地球,地球真是大,地球上面住娃娃,娃娃娃娃真可爱,有的娃娃是胎生,有的娃娃是卵生,娃娃快快找到自己的家。儿歌念完赶快找到自己的家,游戏玩两遍)
活动目标1.在理解故事的基础上,大胆表达自己的想法。2.尝试对物体的大小进行比较、匹配。 活动准备 三只熊图片,ppt,三只熊及大中小三只沙发(人手一份),粘贴工具 活动过程一、引发兴趣1.出示三只熊的图片,介绍熊的一家。2.出示三只碗的的图片 提问:你猜猜看这三只碗是谁用的?3.出示三把椅子的图片,请幼儿说说这三把椅子分别是谁坐。
查纠整改环节以来,我县政法队伍教育整顿紧扣清除害群之马、整治顽瘴痼疾“两大任务”,突出政治引领、锚定目标方向,坚持实事求是、上下联动,高标准狠抓问题整改有节有序,高精度聚焦顽疾整治有为有效,高效能推进建章立制有法有据,查纠整改环节取得较好效果。面对已取得的工作成绩,各级各单位要站在讲政治的高度,对照全国教育整顿办和中央第X督导组部署要求,持续紧盯线索核查、顽瘴痼疾整治两个短板,以自我革命、刀刃向内的勇气检视整改问题
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。