将口袋缝制在肘后,虽然拿东西也很不方便,但因在口袋里盛装的只能是些细小、轻便的贵重物品,加之袖子比较宽大,手伸到袖内口袋里取物,也还是可以轻易做到的。如:东晋时期的医学家葛洪广泛收集当时民间流传的用于常见病的处方后,编成《肘后备急方》。其书的名称就使用了“肘后”一词,意在表明书是放在肘后的口袋中,是可以随身携带、查阅的,具有应急救助的寓义。由此也说明,古人上衣中的口袋位置是在袖内的肘后。
尊敬的各位老师,亲爱的同学们:早上好!三天前,在北京举行了盛大的纪念反法西斯抗战胜利70周年的阅兵式,大家也都亲自感受到了那气势恢宏、震撼人心的场景。从今天开始,大家要踏上训练场,体验一下当兵的生活!有同学说训练很苦,我却想告诉大家。今天,我们能在和平的年代进行军训,就是一种幸福。70年前的那场浩劫,中国军民死伤达3500万以上,9500万平民沦为难民,中国近多半的领土被日军的铁蹄蹂躏八年之久。很庆幸,我们没有生活在那个时代,而是生活在现在这样一个和平、繁盛的时期,我们有什么理由去抱怨,有什么借口挥霍现在的日子。我们所要做的就是珍惜现在,感恩那些为我们创造了这个时代的所有人。早晨,大家睁开惺忪睡眼,沐浴着晨光踏上训练场,你要感恩身边没有炮火,没有枪声,一切都是那样安静与祥和。当你挺直腰杆,聆听着教官讲解动作要点,你应该感恩没有奔波,没有衣食之忧,一切都是如此和谐与静谧。
大家好!我是来自初二(9)班的吴佩臻,今天我国旗下的讲话题目为“告别童年 走向成熟”两天后,就是儿童节了,首先我在这里祝大家儿童节快乐。而对于我们初二的同学们来说,这是最后一个儿童节,也将标志着我们告别童年,带着早已沸腾在血液中的成熟,早已准备着跳动青春的气息,真正地成为一名青少年,去拥抱五岁的天空。时光荏苒,蓦然回首,这十几年,我们在成长的道路上,印下了一个个或大或小或深或浅的足迹。十几年来,我们用天真烂漫的情怀,编织了一首人生中最难以忘怀的童年之歌。还记得月光下和小伙伴在庭院里洒下的咯咯笑声吗?那是我们快乐的童年。还记得冲刺外校前奔波于各个培优点之间的匆匆身影吗?那是我们紧张忙碌的童年。还记得刚入校时我们无法适应新生活而挂在嘴边的声声抱怨吗?那是我们受挫的童年。
秋季开学学生国旗下讲话稿【一】尊敬的老师,亲爱的同学们:大家上午好!我是xxx学校xx班的xxx,今天我国旗下讲话的题目是《谁让我们是学生》。学生!一个多么响亮的名字,却又干着多么累的差事。每天都是学习学习再学习,作业作业照旧作业,真是太苦了!但是,学习又是多么紧张!说小了,它决定着我们一生的运气和前程;放大了,它决定着社会的生长和国度的壮大。梁启超说过“少年强则国强”,而“强”表如今有知识有文化有技能。要想拥有这些,我们必须学习。我们是学生,祖国的来日是否壮大就牢牢地掌握在我们手里!谁让我们是学生,谁让我们是襄阳四中实验中学的学生!祖国的未来、母校的光辉需要我们去创造!所以我们不怕苦,不怕累,靠着勤奋和毅力一直在求学的道路上坚持着。每天早晨,人们还在熟睡,连太阳公公都还在梦乡时,我们已经活跃在塑胶跑道上。响亮的背书声划破天际,整齐的脚步声震动大地,新的一天在我们的欢呼声中开始。晚上,忙碌了一天的人们早已进入了梦乡,而我们依然坚守我们的阵地,履行我们的职责,在明亮的灯光下,默默看书学习。在寝室里,你是看不到疯打的身影的,你是听不到嘈杂的叫声的,因为——谁让我们是学生!谁让我们拥有这么多渴望我们成长的眼神!谁让我们这么渴望成功!学习是我们的本分!再大的风雨也冲不走我们对学习的热情。我们视学校为阵地,视学习为本分,视老师为怙恃,把设置装备部署故国当做目的,在艰巨中发展,在风雨中前行,在困难中挑衅,永久记得我们是学生!
敬爱的老师们、亲爱的同学们:清晨,我们相聚在此,能够站在国旗下讲话,我感到很荣幸,谢谢老师给了我这样一个宝贵的机会,今天,我要演讲的题目是《让我们迎接期末考试的到来》!有这样一首歌大家听过吗:“阳光总在风雨后,乌云上有晴空,珍惜所有的感动,每一份希望在你手中。”这首歌的名字大家应该很熟悉,叫做《阳光总在风雨后》。生活就是如此,不经历风雨,怎么能见到彩虹?那么我们不经历期末考试,怎能知道我们学习的效果?怎能知道我们的成绩是什么?期末考试就快临近了,我们都进入了紧张的备考阶段,同学们,你们做好准备了吗?在这里,我想给大家提点建议,有不足之处,请大家批评指正。第一,与时间赛跑。时间就是生命,时间就是一切,也许一分钟的时候不能给你带来一分的成绩,但是一分钟的时间,绝对可以给你带来一点一滴的进步。在历史的长河中,时间是最公正的,但也是最短暂的,只有争分夺秒去努力,只有与时间赛跑,我们的成绩才会有更多的进步,期末考试才会变得轻松自在。
各位老师、同学们:大家上午好!我今天国旗下讲话的主题是《践行绿色生活》。今天是六月一日,是大家都很熟悉的儿童节,再过几天的六月五日也是一个很有意义的节日——世界环境日,今年是第45个世界环境日,中国的主题是“践行绿色生活”。今年6月5日也是新环保法实施后的首个“环境日”。“践行绿色生活”这个主题旨在增强全民环境意识、节约意识、生态意识,选择低碳、节俭的绿色生活方式和消费模式,形成人人、事事、时时崇尚生态文明的社会新风尚。自然环境是我们人类生存的基础,保护和改善自然环境,是人类维护自身生存和发展的前提。那么,同学们应该怎样保护环境呢?保护环境,推动生活方式绿色化,需要大家自觉从衣、食、住、行各方面做出绿色选择,应该从身边小事做起。而你们一直在实践着!建阳一中历年来始终坚持把学校教育与环境教育紧密结合起来,努力用“绿色”教育理念培育学生、引导学生,通过课内教学和课外社会实践活动相结合的办法,切实使学生掌握有关环境保护的生活知识,扩大学生的视野,培养了学生关爱社会、关爱地球、关爱他人的美好情操,受到社会各界的肯定和广泛赞誉。
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
1、 前提条件:①环境几乎一样的平原地区,人口分布均匀2、 ②区域的运输条件一致,影响运输的惟一因素是距离。城市六边形服务范围形成过程。(理解)a.当某一货物的供应点只有少数几个时,为了避免竞争、获取最大利润,供应点的距离不会太近,它们的服务范围都是圆形的。 b.在利润的吸引下,不断有新的供应点出现,原有的服务范围会因此而缩小。这时,该货物的供应处于饱和。每个供应点的服务范围仍是圆形的,并彼此相切c.如果每个供应点的服务范围都是圆形相切却不重叠的话,圆与圆之间就会存在空白区。这里的消费者如果都选择最近的供应点来寻求服务的话,空白区又可以分割咸三部分,分别属于三个离其最近的供应点。[思考]①图2.15中城市有几个等级?②找出表示每一等级六边形服务范围的线条颜色?③叙述不同等级城市之间服务范围及其相互关系?3、理论基础:德国南部城市4、意义:运用这种理论来指导区域规划、城市建设和商业网点的布局。1、 应用——“荷兰圩田居民点的设置”。
学生探究案例:找出不同等级城市的数目与城镇级别的关系、城镇的分布与城镇级别的关系并试着解释原因。在此基础上,指导学生一步步阅读书上的阅读材料,首先说明这是德国著名的经济地理学家克里斯泰勒对德国南部城市等级体系研究得出的中心地理论,他是在假设土壤肥力相等、资源分布均匀、没有边界的平原上,交通条件一致、消费者收入及需求一致、人们就近购买货物和服务的情况下得出的理想模式。然后指导学生阅读图2.14下文字说明,理解城市六边形服务范围形成过程。指导学生读图2.15,找出图中城市的等级、每一等级六边形服务范围并叙述不同等级城市之间服务范围及其相互关系,从而得出不同等级城市的空间分布规律,六边形服务范围,层层嵌套的理论模式。给出荷兰圩田空白图,让学生应用上面的理论规划设计居民点并说出理由,再和教材上的规划进行对照。然后给出长三角地区城市分布图和各城市人口数,让学生对这些城市进行分级,概括每一级城市的服务功能、统计每一等级城市的数目以及彼此间的平均距离,总结城市等级与服务范围、空间分布的关系?
2、培养幼儿的动手能力、审美能力和创造性思维能力。环境创设一、信息资源的准备1、收集各种扇子实物,互相介绍自己的扇子,寻找各种扇子的异同,启发幼儿按大小、形状、制作材料(绸面、藤面、葵叶、鹅毛、纸、木等)、扇面图案进行分类。2、家长与孩子共同收集跟扇子有关的故事、录像、图书、图片等资料,鼓励幼儿将查找途径、内容用图表形式记录下来(见图一)。3、在室内布置有关幼儿参观商场、购买扇子的照片,同时把幼儿围绕扇子所提的问题及如图一的记录表展示在墙面上。二、工具与材料的准备1、多用组合架。用铁丝做一个架子固定在墙上,将相关的工具与部分装饰用品串挂在组合架上,如线团、包装纸等。在剪去瓶口的矿泉水瓶、酸奶瓶内插装画笔、尺子、钳子、小锯子、剪刀等工具。2、趣味废纸箱(见图三)。既可美化活动区,又能培养幼儿的环保意识。如将蛋糕盒纵向裁半,将其装饰成孩子头像或其他形象,穿绳悬挂在区角墙壁上。也可直接将经过装饰的方形纸箱放在区角。3、制作材料及方法(见图四)。有待装饰的扇面和扇页,白志、色纸与废旧挂历纸,有孔的薄木片、薄竹片条等,启发幼儿按自己的意愿选择材料进行制作,作品完成后可用各色丝线饰扇把。
重点难点:·重点:能选用合适的材料做螃蟹·难点:正确表现螃蟹的身体与脚的连接 活动准备:·经验准备:了解螃蟹的特征·物质准备:范例、各种废旧物品及辅助材料,积木搭的蟹塘 活动过程:引导幼儿观察“蟹塘”,激起兴趣1.请幼儿说说螃蟹的外形特征。2.欣赏范例,并组织幼儿讨论:可以用哪些材料做螃蟹? 二、交代活动的要求1.先选好材料,看看哪些材料适合做螃蟹的身体或脚;2.螃蟹身体和脚连接要牢固;3.用过的东西放回原处,同伴之间可以共同完成作品。 三、幼儿制作,教师指导1.启发幼儿选用合适的材料有机的结合,大胆的表现。2.适当的指导螃蟹身体和脚的连接的方法。 四、作品讲评1.请幼儿把作品放在“蟹塘”,相互欣赏,并互介绍自己的材料。2.请幼儿说说谁的螃蟹做的最好,用的材料最巧妙? 延伸活动:将剩余的材料放在美工区供幼儿平时制作。并经常添置,制作其他手工品。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。