1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.(三)理解性质,应用巩固师提出问题:我们可以回过头来,想一想刚解过的方程哪个变化过程可以叫做移项.学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.对比练习: 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、化简、检验.)
②.通过“由文字语言到符号语言”再“由符号语言到文字语言”让学生从正反两方面双向建构.突破难点策略:①.分三步分散难点:引入时大量的实际情景,让学生体会到代数式存在的普遍性;让学生给自己构造的一些简单代数式赋予实际意义,进一步体会代数式的模型思想;通过“主题研究”等环节进一步提高解决实际问题的能力.②.适时安排小组合作与交流,使学生在倾听、质疑、说服、推广的过程中得到“同化”和“顺应”,直至豁然开朗,突破思维的瓶颈.2.生成预设为生成服务,本案编代数式、主题研究等环节的设计为学生精彩的生成提供了很好的平台,在实际教学过程中,教师要注重生成信息的捕捉,善于发现学生思维的亮点,及时进行引导和激励,并根据具体教学对象,适当调整教与学,使教学过程真正成为生成教育智慧和增强实践能力的过程.让预设与生成齐飞.
方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.问:此题目还可以 如何画出图形?作法二 :(1)在四边形ABCD外任取一点 O;(2)过点O分别作射线OA, OB, OC,OD;(3)分别在射线OA, OB, OC, OD的反向延长线上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′ C′、C′D′、D′A′,得到所 要画的四边形A′B′C′D′,如图3. 作法三:(1)在四边形ABCD内任取一点O;(2)过点O分别作 射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A′B′、B′C ′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)三、课堂练习 活动3 教材习题小结:谈谈你这节课学习的收获.
①分别连接OA,OB,OC,OD,OE;②分别在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③顺次连接A′B′,B′C′,C′D′,D′E′,E′A′.五边形A′B′C′D′E′就是所求作的五边形;(3)画法如下:①分别连接AO,BO,CO,DO,EO,FO并延长;②分别在AO,BO,CO,DO,EO,FO的延长线上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③顺次连接A′B′,B′C′,C′D′,D′E′,E′F′,F′A′.六边形A′B′C′D′E′F′就是所求作的六边形.方法总结:(1)画位似图形时,要注意相似比,即分清楚是已知原图与新图的相似比,还是新图与原图的相似比.(2)画位似图形的关键是画出图形中顶点的对应点.画图的方法大致有两种:一是每对对应点都在位似中心的同侧;二是每对对应点都在位似中心的两侧.(3)若没有指定位似中心的位置,则画图时位似中心的取法有多种,对画图而言,以多边形的一个顶点为位似中心时,画图最简便.三、板书设计
(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
三、下步工作(一)守牢基层化解“主阵地”,竭力遏上行。深入开展矛盾纠纷排查化解,有效减少矛盾积累、问题上行、风险外溢。发挥常态化安保指挥部作用,对风险隐患进行预警和化解处置。(二)打好规范办理“主动仗”,全面提质效。对事项按照“十步法”,落实“三到位”,切实形成闭环,防止初转重。建立国家局登记求决类初件包保机制,确保程序性办结和实质性化解。对重复事项要溯源复盘,摸清缘由经过、主要诉求、政策依据、症结难点等,力争化解,防止重转积。对不满意件、未参评件高度关注,要求责任单位继续做好教育疏导工作,加强督查督办,既督问题解决、也查首办责任,属于失职失责的,提出追责问责建议。(三)啃下积案化解“硬骨头”,确保真解决。从讲政治的高度扛起重点事项化解责任,严格落实专班责任制,实行“一案一策、一人一专班”,找准事项突破口、压缩化解时限,办一件、结一件、了一件,确保事项真化解。
(一)守牢基层化解“主阵地”,竭力遏上行。深入开展矛盾纠纷排查化解,有效减少矛盾积累、问题上行、风险外溢。发挥常态化安保指挥部作用,对风险隐患进行预警和化解处置。(二)打好规范办理“主动仗”,全面提质效。对事项按照“十步法”,落实“三到位”,切实形成闭环,防止初转重。建立国家局登记求决类初件包保机制,确保程序性办结和实质性化解。对重复事项要溯源复盘,摸清缘由经过、主要诉求、政策依据、症结难点等,力争化解,防止重转积。对不满意件、未参评件高度关注,要求责任单位继续做好教育疏导工作,加强督查督办,既督问题解决、也查首办责任,属于失职失责的,提出追责问责建议。(三)啃下积案化解“硬骨头”,确保真解决。从讲政治的高度扛起重点事项化解责任,严格落实专班责任制,实行“一案一策、一人一专班”,找准事项突破口、压缩化解时限,办一件、结一件、了一件,确保事项真化解。
通过以上工作的开展,我办软件正版化工作的推进取得了明显的成效,干部职工提高了对使用正版软件重要性的认识,增强了保护知识产权的化意识,确保了软件正版化管理制度的落实。二、2023年工作计划今后,我办将进一步做好软件正版化工作。一是坚决使用正版操作系统和办公软件,全力推动机关单位正版软件使用工作。二是加大软件正版化的宣传教育力度,提高机关工作人员对软件正版化工作的认识,促使工作人员自觉使用正版软件。三是建立软件正版化长效工作机制。我办将进一步完善正版软件采购工作机制,健全软件资产管理制度,建立正版软件安装使用台账,实现对正版软件采购、配置、升级、使用、处置等工作的动态监控管理。继续做好资金保障工作,严格按照软件正版化工作要求和实际使用需求,在年度经费预算和信息化项目建设经费中安排必要的软件采购资金。
3、注重五育并举实施途径,树立“五育并举”的育人观,拓宽“五育并举”的实施途径,优化“五育并举”干部教师队伍,构建“五育并举”监测评价体系。4、在五育并举工作中,贯彻好因地制宜原则、适应性原则、普及性的原则、全面性原则、以人为本原则。5、为切实保证五育并举工作实施,学校将抓好宏观谋划和调度总结;完善设施设备,做好后勤保障;开展丰富多彩活动,搭建好五育并举展示平台。(五)安全及后勤工作1、安全工作(1)牢固树立“安全第一、预防为主、综合治理”工作方针,全面落实安全目标责任制。强化安全目标责任意识,落实“一岗双责”,确定安全责任管理主体,全员、全面,全过程落实管理工作。(2)开齐开足安全教育课;充分发挥“济南市学校安全教育平台”的资源优势,继续深化“1530”安全警示教育,利用开学初、寒暑假、重大节日等时机,通过各类主题教育活动,增强安全教育的针对性和实效性。实时举办法制讲座和心理健康讲座,增强学生的法制观念,提髙学生辨别是非和自我调控的能力,继续开展好每周一次的国旗下安全教育活动。
二是严格要求,强化整治。对建筑施工、机加工和铸造等重点金属焊接切割行业进行集中检查,消除安全隐患。三是积极组织培训,提高劳动技能。举办金属焊接切割作业人员培训班,组织无证作业人员参加培训,确保持证上岗。此次专项整治活动,我镇对辖区21家企业、19个行政村、7家建筑工地进行了全面的检查,共查出安全隐患31处,分别采取停止作业、调换工作岗位、参加培训等措施,督促责任单位改正。根据整改复查情况看,被查的企业均已积极行动起来,按要求进行了整改。存在的问题:常袋镇金属焊接切割作业企业规模比较小,数量多,其中新开工建设较多,劳动力招聘困难,部分企业为了赶工期,临时招聘或调换非焊接工作岗位未培训取证从事金属焊接切割作业现象时有发生,管理难度较大。
对建筑施工、机加工和铸造等重点金属焊接切割行业进行集中检查,消除安全隐患。三是积极组织培训,提高劳动技能。举办金属焊接切割作业人员培训班,组织无证作业人员参加培训,确保持证上岗。此次专项整治活动,我镇对辖区21家企业、19个行政村、7家建筑工地进行了全面的检查,共查出安全隐患31处,分别采取停止作业、调换工作岗位、参加培训等措施,督促责任单位改正。根据整改复查情况看,被查的企业均已积极行动起来,按要求进行了整改。存在的问题:常袋镇金属焊接切割作业企业规模比较小,数量多,其中新开工建设较多,劳动力招聘困难,部分企业为了赶工期,临时招聘或调换非焊接工作岗位未培训取证从事金属焊接切割作业现象时有发生,管理难度较大。
内容:分式方程的解法及应用——初三中考数学第一轮复习学习目标:1、熟练利用去分母化分式方程为整式方程2、熟练利用分式方程的解法解决含参数的分式方程的问题重点:分式方程的解法(尤其要理解“验”的重要性)难点:含参数的分式方程问题预习内容:1、观看《分式方程的解法》《含参数分式方程增根问题》《解含参分式方程》视频2、完成预习检测
知识与技能目标:1. 能正确说出三元一次方程(组)及其解的概念,能正确判别一组数是否是三元一次方程(组)的解;2. 会根据实际问题列出简单的三元一次方程或三元一次方程组。过程与方法目标:1. 通过加深对概念的理解,提高对“元”和“次”的认识。2. 能够逐步培养类比分析和归纳概括的能力,了解辩证统一的思想。情感态度与价值观目标:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。