设计思路:以教师从淄川到张店西六路小学讲课的亲身经历为线索,创设具有浓郁的生活色彩的教学情境。教学素材来自生活,学生的注意力能迅速被吸引到多姿多彩、具体可感的现实生活中,学生感觉亲切自然、兴趣浓厚;所求问题源于学生自己,其主动精神被充分激发,自主解决问题的动机强烈;解题方法由学生在独立思考的基础上小组研讨得出,学生的主体作用得以充分发挥;最后让学生帮老师解决返程的实际问题,在颇富挑战性的情境中,既巩固了新知,又培养了学生运用知识解决实际问题的能力,向现实生活做了适当的延伸。自始至终,气氛和谐生动自然,学生在生活化情境中积极主动地提出问题、解答问题、展示自我,整个课堂呈现出情知交融、知行统一、个性共扬的气象,课堂上流淌着积极参与、主动创新的欢声笑语。教学过程:一、创设自然生动的生活情境师:同学们,昨天咱们已经见过面了,谁还记得我?(学生踊跃举手,气氛热烈。)师:你已经了解了我的哪些情况?
二、教学目标1、知识与技能:通过观察、操作等实践活动,进一步加深对平移和旋转新知的认识。培养学生动手实践能力,并初步获得绘图、剪图等技能。2、数学思考:在对简单图形变化、运动规律的探索过程中,发展空间观念,培养形象思维能力和逻辑思维能力,初步渗透变换的数学思想方法。在解决问题过程中,能进行简单的、有条理的思考。3、解决问题:能在教师指导下,从日常生活中发现简单的数学问题。有与同伴合作解决问题的体验。初步学会表达解决问题的大致过程和结果。4、情感与态度:在同伴和教师的鼓励与帮助下,对身边的数学有好奇心,能够积极参与数学实践活动。能克服在数学活动中的某些困难,获得成功的体验,有学好数学的信心。了解并喜爱中国民间的传统工艺“剪纸”。
一、初步感知间隔的含义1、请同学们伸出右手,张开,数一数,5个手指之间有几个空格?在数学上,我们把 空格叫做间隔,也就是说,5个手指之间有几个间隔?4个间隔是在几个手指之间?2. 其实,这样的数学问题,在我们的生活中,随处可见。谁能举几个这样的例子3、看图:在画面上我们看到春天桃红柳绿,到处是一派生机勃勃的景象,你们知道吗?3月12日是什么日子,这一天全国上下到处都在植树,为保护环境献出自己的一份力量。 出示图:这里从头到尾栽了几棵树,数一数,它们之间又有几个间隔呢?你发现了什么?谁来说一说?同时板书。4、那你能像这样用一个图表示出来吗?请你们选择一种动手画一画吧!5、汇报:画了8棵树,他们之间有7个间隔数,9棵树之间有8个间隔。……6、你发现植树棵树和间隔数之间有什么规律呢?(自己先想想,再把你的想法和伙伴们互相交流一下)。反馈:谁来说说你的发现?评价:哦,这是你的发现……你还能用一个算式来概括。边板书边说:同学们都发现了从头到尾栽一排树时,植树棵树比间隔数多1,(指表格),也可以写成两端要栽时,植树棵数-间隔数+1,间隔数=植树棵树-1。
《贴邮票》活动要求:A、每组4人,给四封不同地点、质量的信件B、根据信封上的信息计算邮费并按要求贴上邮票(邮票的总面值刚好等于邮费,不能多贴)每封信最多贴三张邮票,只有0.8元或1.2元的两种邮票纪律要求:看看哪组合作得最好,速度最快!如果遇到困难,在事发那个在一边最后再去解决。3、小组汇报(1)、贴邮票的过程中大家遇到了什么问题?(有的能贴有的不能贴)这样的信件有哪些?(告诉我地点、质量、邮费)(2)、其他的信件都能贴出来嘛?说说看你是怎么贴邮票的?(3)、请将你们贴好邮票的信件送到邮箱来。剩下的都是一些“难题”(4)、思考:为什么4.0元、4.8元、6元的邮费没有办法按要求贴出邮票?(5)、原因出在哪里?这个问题怎么解决?(邮票面值太小,将邮票的面值改大)(6)、那最少要改成多大的?为什么?(将邮票面值改大,你会从多大面值的邮票开始考虑?为什么?)
一、创设情境,猜想验证1.猜一猜,摸一摸。一盒粉笔若干支,5种不同的颜色。至少摸几支能保证:(1)2支同色的。(2)3支同色的。(3)4支同色的。2.想一想,摸一摸。请学生独立思考后,先在小组内交流自己的想法,再动手操作试一试,验证各自的猜想。在这个过程中,教师要加强巡视,要注意引导学生思考本题与前面所讲的抽屉原理有没有联系,如果有联系,有什么样的联系,应该把什么看成抽屉,要分放的东西是什么。二、观察比较,分析推理1.说一说,在比较中初步感知。2.想一想,在反思中学习推理。三、深入探究,沟通联系四、对比练习,感悟新知1.说一说。把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到两个颜色相同的球?2.算一算。向东小学六年级共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么?五、总结评价六、布置作业
课题十: 解决问题(一)教学内容:解决问题教学目标:1、会解决有关小数除法的简单实际问题。2、能探索出解决问题的有效方法,并试图寻找其他方法,能表达解决问题的过程。教学过程:一、引入新课:前面我们学习了小数除法的计算,那么你会解决下面的问题吗?(板书课题)二、自主探索(出示例11)1、先独立思考解答。2、小组内交流,可以先算什么?3、小组汇报,全班交流,说说不同的思路。再指名说说。三、巩固练习1、“做一做”独立完成,全班交流。再指名说说不同的解题思路。2、完成P34 3师:你从此题中收集到了哪些信息?要解决什么问题?如何思考?生先独立思考,再小组交流,汇报分析过程。师小结,解答问题时要找准有直接关系的条件或信息。
让听、读二者结合,由歌曲的美引到歌词的美,激励学生去展现歌词的美。一方面锻炼了学生的口语表达能力,另一方面,使学生对歌曲有了更深刻的体会。让学生真正走进了作者的心灵深处,提高了学生的审美能力,让学生学而有味、体验无穷。4、创编舞蹈 开拓思维本环节我将学生分为几组,小组合作为这首歌曲创编动作,并分组展示,最后老师整合,师生共舞。从而为学生搭建平台,开拓学生的思维,加强小组间的合作意识。5、拓展视野 升华情感通过三首拓展的儿歌,分享他们的故事,使学生懂得真诚的朋友给我们带来了和谐的美;明媚的自然风光给我们带来大自然的美;勤劳的双手给我们创造了美;和平的友谊给我们带来幸福的美;团结的友爱给我们带来温馨的美。情感得到进一步升华。
5、学唱歌曲。学生用听唱发跟钢琴学唱。强调:切分节奏与后起八分符唱法。6、完整演唱教师引导学生注意二声部合唱的和谐与统一。7、歌曲处理通过学生分组讨论,边总结边实践体验,引导学生从速度、力度、情绪,三方面入手表现歌曲,指导学生二声部要唱得清晰、和谐,要用富有弹性的声音演唱歌唱,结束句表现出春雨越来越弱、声音越来越小。使感情在此得到升华。8、带感情完整演唱歌曲(设计意图:通过学习学生对歌曲的旋律已经很熟悉了,因此结合本课的教学重点挖掘歌曲意境,体验合唱之美。教学中教师通过多媒体画面营造美的意境,使学生视听结合,产生美的感受。引导学生轻声哼唱体会歌曲意境,通过歌曲处理、二声部合唱表现歌曲宁静、幻想的意境。教学中充分体现了学生的主体地位,学生从听到说到唱,身体和心理都参与了教学的每个过程,达到了“身动”与“心动”的统一。)
2、唱准歌曲:出示歌曲总谱生再次聆听歌曲,熟悉歌曲内容,给乐曲分段。3、节奏学习学会给乐曲分乐段,注意呼吸记号处,降A调的认识。四四拍的打法及练习。4、学唱旋律:教师范唱,学生分小组自学,可以借助课堂乐器帮助。5、填词演唱学生朗诵歌词,再听歌曲,看歌词轻唱感受歌曲。6、学生轻声跟琴演唱歌曲,教师适当指导。说明:用自然、明亮的声音,以及积极的歌唱状态轻松自如地进行歌唱。演唱时注意八度跳进的音准。7、集体演唱,并配上简单的动作(牵手、挥手、左右晃动身体)生生互演分组演唱小组合作四、小结:让我们在爱的世界中感恩;让我们与爱同行;让世界充满爱。教学反思:《地球是个美丽的圆》:“地球”代表大自然,美丽的“圆”正是人们所向往的。在本节课上,我以地球为载体,以感受大自然、保护大自然、热爱生活为主线,通过看、听、赏、唱、创、演来展开教学。
如图,四边形OABC是边长为1的正方形,反比例函数y=kx的图象经过点B(x0,y0),则k的值为.解析:∵四边形OABC是边长为1的正方形,∴它的面积为1,且BA⊥y轴.又∵点B(x0,y0)是反比例函数y=kx图象上的一点,则有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵点B在第二象限,∴k=-1.方法总结:利用正方形或矩形或三角形的面积确定|k|的值之后,要注意根据函数图象所在位置或函数的增减性确定k的符号.三、板书设计反比例函数的性质性质当k>0时,在每一象限内,y的值随x的值的增大而减小当k<0时,在每一象限内,y的值随x的值的增大而增大反比例函数图象中比例系数k的几何意义通过对反比例函数图象的全面观察和比较,发现函数自身的规律,概括反比例函数的有关性质,进行语言表述,训练学生的概括、总结能力,在相互交流中发展从图象中获取信息的能力.让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
解:(1)∵点(1,5)在反比例函数y=kx的图象上,∴5=k1,即k=5,∴反比例函数的解析式为y=5x.又∵点(1,5)在一次函数y=3x+m的图象上,∴5=3+m,即m=2,∴一次函数的解析式为y=3x+2;(2)由题意,联立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴这两个函数图象的另一个交点的坐标为(-53,-3).三、板书设计反比例函数的图象形状:双曲线位置当k>0时,两支曲线分别位于 第一、三象限内当k<0时,两支曲线分别位于 第二、四象限内画法:列表、描点、连线(描点法)通过学生自己动手列表、描点、连线,提高学生的作图能力.理解函数的三种表示方法及相互转换,对函数进行认识上的整合,逐步明确研究函数的一般要求.反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动的空间.
因为反比例函数的图象经过点A(1.5,400),所以有k=600.所以反比例函数的关系式为p=600S(S>0);(2)当S=0.2时,p=6000.2=3000,即压强是3000Pa;(3)由题意知600S≤6000,所以S≥0.1,即木板面积至少要有0.1m2.方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p= ,当压力F一定时,p与S成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.三、板书设计反比例函数的应用实际问题与反比例函数反比例函数与其他学科知识的综合经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.
观察 和 的图象,它们有什么相同点和不同点?学生小组讨论,弄清上述两个图象的异同点。交流讨论反比 例函数图象是中心对称图形吗?如果是,请找出对称中心.反比例函数图象是轴对称图形吗?如果是,请指出它的对称轴.二、随堂练习课本随堂练习 [探索与交流]对于函数 , 两支曲线分别位于哪个象限内?对于函数 ,两支曲线又分别位于哪个象限内?怎样区别这两个函数的图象。学生分四人小组全班探索。 三、课堂总结在进行函数的列表,描点作图的活动中,就已经渗透了反比例函数图象的特征,因此在作图象的过程中,大家要进行积极的探索 。另外,(1)反比例函数的图象是非线性的,它的图象是双曲线;(2)反比例 函数y= 的图像,当k>0时,它的图像位于一、三象限内,当k<0时,它的图像位于二、四象限内;(3)反比例函数既是中心对称图形,又是轴对称图形。
补充题:为了预防“非典”,某学校对教室采用药熏消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如右图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范围为 ;药物燃烧后,y关于x的函数关系式为 .(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)y= x, 010,即空气中的含药量不低于3毫克/m3的持续时间为12分钟,大于10分钟的有效消毒时间.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
(4)议一议:频率与概率有什么区别和联系?随着重复实验次数的不断增加,频率的变化趋势如何?结论:从上面的试验可以看到:当重复实验的次数大量增加时,事件发 生的频率就稳定在相应的概率附近,因此,我们可以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率。三、做一做:1.某运动员投篮5次, 投中4次,能否说该运动员投一次篮,投中的概率为4/5?为什么?2.回答下列问题:(1)抽检1000件衬衣,其中不合格的衬衣有2件,由 此估计抽1件衬衣合格的概率是多少?(2)1998年,在美国密歇根州汉诺城市的一个农场里出生了1头白色的小奶牛,据统计,平均出生1千万头牛才会有1头是白色的,由此估计出生一头奶牛为白色的概率为多少?
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.问:此题目还可以 如何画出图形?作法二 :(1)在四边形ABCD外任取一点 O;(2)过点O分别作射线OA, OB, OC,OD;(3)分别在射线OA, OB, OC, OD的反向延长线上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′ C′、C′D′、D′A′,得到所 要画的四边形A′B′C′D′,如图3. 作法三:(1)在四边形ABCD内任取一点O;(2)过点O分别作 射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A′B′、B′C ′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)三、课堂练习 活动3 教材习题小结:谈谈你这节课学习的收获.
方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.