解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?解析:(1)分1≤x<50和50≤x≤90两种情况进行讨论,利用利润=每件的利润×销售的件数,即可求得函数的解析式;(2)利用(1)得到的两个解析式,结合二次函数与一次函数的性质分别求得最值,然后两种情况下取最大的即可.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)当1≤x<50时,y=-2x2+180x+2000,二次函数开口向下,对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y=-120x+12000,y随x的增大而减小,当x=50时,y最大=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.方法总结:本题考查了二次函数的应用,读懂表格信息、理解利润的计算方法,即利润=每件的利润×销售的件数,是解决问题的关键.
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
2、激发幼儿敢于探索和勇于发现的学习兴趣,培养幼儿互相合作,互相谦让的优良品质。 活动准备:音乐 活动过程: 一、游戏《木头人》,指出人不动是很难受的。 二、让幼儿明白人有各种各样的活动,是因为人的许多部位都可以动。 1、听音乐做动作 提问:刚才,我们跟着音乐在干什么?是身体的哪些部位跟着音乐在动? 2、引导幼儿观察周围生活 提问:除了舞蹈是人身体的一种活动外,你还知道人们有些什么样的活动?它们分别是我们身体的哪些部位在动?
活动环节:一、游戏《木头人》和听音乐做动作。目的:通过游戏活动,引起幼儿对本课题的兴趣。二、谈话。目的:让幼儿了解人们生活中的一些活动,知道它们分别是我们身体的哪些部位在动。三、每组一个纸娃娃,让幼儿把会动的部位做好记号。目的:让幼儿通过探索活动,感知身体哪些部位可以动,培养幼儿的合作精神。四、游戏:听口令,做动作目的:进一步激发幼儿对自己身体感兴趣。活动过程:一、游戏《木头人》,指出人不动是很难受的。二、让幼儿明白人有各种各样的活动,是因为人的许多部位都可以动。
1、班主任要分析班级学生的行为和习惯,制定切实可行的班级安全工作规章制度。 2、针对当前甲型h1n1现状,积极在班级宣传防控措施,张贴相关知识明白纸,出防控黑板报,监督好值日人员的开窗通风及消毒工作。 3、重视安全教育,要经常在班内回顾总结安全上存在的隐患,提出引起注意和需改正的要求。
四、存在的问题和困难1、由于上半年集中精力理顺基础资料管理,在营销策划、业务宣传、市场调研、人员培训等方面比较薄弱,造成对县区公司业务发展支持不够。2、由于省公司系统准备升级,我公司很多报表需求无法满足,计算绩效考核指标、分析经营数据给市公司和县区支撑部门带来很大工作量。以上就是我工作情况的总结。如有不当之处,还请大家批评指正。谢谢大家!市场开发部年终个人工作总结10转眼间,新的一年又到来了。在这一年的工作中,我虚心向同事请教,从熟悉人员、熟悉商户、熟悉业务知识做起,从一点一滴做起,使自己能够很快被员工和商户接受并认可,从而很快进入角色,担负起自己的责任,配合经营部经理做好经营管理工作。现就自己一年的工作做以下总结:一、经营工作方面
教学过程:一、组织教学:师生问好。(同学们今天的状态真精神,希望你们表现的也会同样精彩。)二、导入师:同学们,你们都听说过瑞士,那有谁知道瑞士有哪些美丽的地方呢?(学生讨论回答。)师:今天我们来学习一首关于发源于瑞士的歌曲。首先让我们来聆听一首歌曲《劳特布鲁嫩的约德尔》。三、新课教学 (一)聆听歌曲 师:同学们,我们一同来听,这首歌曲表现了什么样的情绪? 生:欢快、活泼。师:在这首歌曲的演奏形式上大家有什么发现呢?生:他们在的声音在不断变化。 师:小结,进行评价。 师:让我们再次聆听,同学们可以仔细聆听这首歌曲的表演特色?(二)简介歌曲约德尔唱法是源自瑞士阿尔卑斯山区的一种特殊唱法、歌曲。在山里牧人们常常用号角和叫喊声来呼唤他们的羊群,牛群,也用歌声向对面山上或山谷中的朋友,情人来传达各种信息。久而久之,他们竟发展出一种十分有趣而又令人惊叹的约德尔唱法。这种唱法的特点是在演唱开始时在中、低音区用真声唱,然后突然用假声进入高音区,并且用这两种方法迅速地交替演唱,形成奇特的效果。师:让我们再来听听歌曲,看谁最能说出歌曲的音乐特点?
教材分析:1、随着社会的进步,人类精神文明的发展,影视音乐也在人们的文化生活中开始占有重要的地位,影视音乐已在音乐领域中形成了一种新的独立的音乐体裁。本课节通过对电影《辛德勒的名单》音乐的讲解,让学生从影视音乐这一样式中来感悟音乐的魅力和美妙。2、在活动与探究中,通过学生分组讨论、为插曲配画面和填写音乐课记录卡等形式让学生巩固上面所学习的知识,通过知识的内化与拓展,让学生在自主探索中了解影视音乐配乐的一般规律。教学过程:欣赏辛德勒主题音乐1、知识拓展:介绍小提琴演奏家--伊扎克?帕尔曼。2、这是主题音乐第一次非常突出而完整地出现,主题音乐吸取了犹太民族音乐的旋律特点,采用了小提琴独奏的方式突出主题。主题音乐在这里的地位非常重要,它标志着善终于战胜了恶,证实了辛德勒的善良,也体现着上千名犹太人终于得到生存权利,人性终于获得了尊严的一种充满酸楚的欣慰。人们目送辛德勒的汽车开走了,但主题音乐中蕴涵着种种无法诠释的深重的情愫却久久难以让人忘怀。
教学过程一、课前准备教师播放乐曲,学生随乐曲进入教师。(设计意图:营造氛围,让乐曲贯穿课堂始终。)二、课程导入讲 述历史背景与电影情节简介。(《辛德勒名单》主题乐曲以低音量继续播放。)三、赏析乐曲(一)初听乐曲,关注音色 教师提出问题并播放乐曲,学生听乐曲, 辨别乐器音色, 感受音乐情绪, 想象电影画面。(二)再听乐曲,关注旋律(1)播放乐曲。(2)教师范唱主题句。(3)提问旋律线进行方式。(设计意图:引导学生体会乐曲旋律波浪式进行的特点以及主题音乐与影片的关系。)(三)视听结合(1)播放影片最震撼人心的“红衣小女孩”经典片段,提示注意影片配乐。(2)提问影片配乐与画面的关系,什么是“主题音乐”。(设计意图:引导学生加深理解影片主题音乐思想内涵、关注影片配乐与画面的关系。)
教学过程:1、欣赏主题音乐——《辛德勒的名单》主题曲师:同学们,有谁知道什么是主题曲吗?(主题音乐——是一段完整的音乐段落,能表达一定的思想感情、性格特点,是影视剧的核心音乐,与主题歌一样,它对影视剧内容、思想情感和人物形象有揭示和深化作用,并起到贯穿全剧剧情、统一作品艺术风格的作用。)师:音乐在影片中起什么作用?(具有贯穿发展的作用,具有推动剧情发展的意义。主题音乐在剧情中是多次出现,形成贯穿发展的连续性。)2、音乐简介《辛德勒名单》配乐的主题结构完整,是常见的三部曲式。在短短的忧伤的引子之后,小提琴如泣如诉地奏出了主题乐段。这贯穿在全片中的哀婉动人的旋律,完全游离于画面之外,从宏观的角度刻划了一灾难深重的民族的心理历程。3、聆听乐曲,感受乐曲的情绪结合画面,欣赏影片中第一次完整出现主题音乐的片段。4、听赏《辛德勒名单》师:音乐开头用的什么乐器?音乐的主奏乐器是什么?你从中听出了什么情绪?5、随堂测验聆听一段音频回答音乐片段在影片中属于什么题材? 6、课堂小结影视音乐在影视作品中有哪些作用?
法律手段:制定和运用经济法规,包括经济立法、经济司法活动等行政手段:采取强制性的行政命令、指示、规定等运用举例:我国一些地区遭遇突如其来的“禽流感”,禽类养殖户损失惨重。国家采取了对疫区封锁,对疫区的养殖户进行经济补贴,以及国家出资统一对疫区进行消毒等措施进行防治,并规定任何人不得将家禽带出疫区,违者追究法律责任。请结合材料说明在防治“禽流感”、发展禽类养殖的过程中,我国政府分别采取了哪些措施教师分析:对疫区养殖户进行经济补贴体现经济手段;对违反规定者追究法律责任,体现法律手段;对疫区进行封锁体现行政手段。(四)反思总结,当堂检测。教师组织学生反思本节课的主要内容(参照板书),进行总结。设计意图:对本节课的内容进行小结,学生的概括过程也是检验学生对本节课理解程度的过程。再次明确学生是学习的主体,并能够发现,问题解决问题。
农业科学的周期是以年为时间单位,一次实验就要等到一次花开、结果。就这样,几个实验误导了袁隆平好几年。这时登在《参考消息》上的一篇不起眼的文章像给迷途中的袁隆平以当头一棒:克里克、沃森和威尔金斯发现DNA螺旋结构,西方的遗传学研究进入分子水平。“我当时还在那里搞什么无性杂交,糟糕得很”。水稻是自花授粉植物,雄蕊雌蕊都在一朵花里面,雌雄同株,没有杂种优势一杂种优势是生物界的普遍现象,小到细菌,大到人,近亲繁殖的结果是种群的退化。但是水稻因为花小,其杂交是当时公认的世界难题,设在马尼拉的世界水稻研究中心就是因为困难重重,差点关闭。袁隆平偏不信这个邪,他突发灵感:专门培养一种特殊的水稻品种——雄花退化的雄性不育系,没有自己的花粉,这样不就可以做到杂种优势了吗?于是,漫长的寻找过程开始了,要找到这样一株雄花退化而且杂交之后产量猛增的“太监”水稻简直是大海捞针。
此探究活动的目的是为了说明马克思主义哲学是科学完整的体系。在探究活动时可以首先向学生简单介绍西方哲学的发展历史,使学生对马克思主义哲学在整个西方哲学中的位置和地位有个大致了解。离开了这个大的背景,学生对马克思主义哲学就容易摸不着头绪。马克思主义哲学之前的唯物主义的局限性表现在:古代朴素的带有辩证法性质的唯物主义主要是追问世界的本原问题,这时的哲学缺乏近代科学作为基础,因此它更多的是一种猜测。它虽然看到了世界的联系和变化,但它还无法理解联系和变化背后的基础和原因。近代形而上学的唯物主义主要是追问人的认识问题,即人的认识的来源是什么,是什么保证人的认识的可靠性。但它对人的认识问题的解决主要是立足于对世界的一种直观观察,认为人的认识来源于对世界的直观的、机械的反映。它不理解人的实践活动,不理解人是在改造世界的过程中认识世界,人的认识是在实践基础上的能动反映。
思考提示在阶级社会中,社会基本矛盾的解决主要是通过阶级斗争实现的,阶级斗争是推动阶级社会发展的直接动力,当旧的生产关系严重阻碍生产力发展,需要进行变革时,代表旧的生产关系的没落阶级却不会自动退出历史舞台,利用旧的上层建筑维护自己的统治,只有代表新生产力发展方向的阶级通过社会革命,推翻没落的阶级统治,才能解放生产力,推动社会向前发展。所以,阶级社会的进步往往是通过激烈的社会革命实现的。但是,社会主义社会与阶级社会不同,这是因为,社会主义社会中,生产力和生产关系、经济基础和上层建筑之间的矛盾是一种非对抗性矛盾,不需要通过一个阶级推翻另一个阶级的阶级斗争的方式来解决,只能通过改革实现社会的发展,通过对生产关系和上层建筑进行改革,实现社会主义的自我完善,从而促进社会的发展。所以,我国经济体制改革是在坚持社会主义制度的前提下,改革生产关系和上层建筑中不适应生产力发展的一系列相互联系的环节和方面。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。